GUÍA DE ESTUDIO PÚBLICA

GEOMETRÍA BÁSICA

CÓDIGO 61021105

GEOMETRÍA BÁSICA CÓDIGO 61021105

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA **ASIGNATURA EQUIPO DOCENTE** HORARIO DE ATENCIÓN AL ESTUDIANTE TUTORIZACIÓN EN CENTROS ASOCIADOS COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE RESULTADOS DE APRENDIZAJE **CONTENIDOS METODOLOGÍA** SISTEMA DE EVALUACIÓN **BIBLIOGRAFÍA BÁSICA** BIBLIOGRAFÍA COMPLEMENTARIA RECURSOS DE APOYO Y WEBGRAFÍA

Ambito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el

UNED 2 CURSO 2020/21

GEOMETRÍA BÁSICA Nombre de la asignatura

Código 61021105 Curso académico 2020/2021

MATEMÁTICAS FUNDAMENTALES Departamento

GRADO EN MATEMÁTICAS Título en que se imparte

Curso PRIMER CURSO SEMESTRE 2 Periodo FORMACIÓN BÁSICA Tipo

Nº ETCS Horas 150.0

Idiomas en que se imparte **CASTELLANO**

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La geometría es una de las ramas fundamentales de las matemáticas.

En esta asignatura se presentan las nociones básicas de geometría. Se estudia "geometría sintética", es decir, sin coordenadas, con el propósito de conocer y ejercitarse en la intuición y el razonamiento geométricos.

Datos de la asignatura:

Créditos ECTS: 6. Asignatura cuatrimestral. Segundo cuatrimestre del primer curso.

"El concepto de espacio se deriva del orden de las cosas exteriores en la representación dada a la mente por los sentidos. La geometría estudia este concepto, ya formado en la mente del geómetra, sin plantearse el problema (psicológico y no matemático) de sug génesis. Son, pues, objeto de estudio en la geometría las relaciones existentes entre sus elementos (puntos, líneas, superficies, rectas, planos, etc) que constituyen el complejo

concepto de espacio ..."

Federigo Enriques (geómetra italiano 1871-1946).

Esta asignatura está dentro de la materia geometría. Es una disciplina central dentro de las especial de la materia geometría. matemáticas, si en la academia de Platón, hace 2000 años, nadie podía ingresar sin saber geometría, en nuestros días nadie debería llamarse matemático sin poseer los conocimientos básicos de geometría.

Los conocimientos básicos de geometría son muy importantes para conocer el origen de muchos problemas que han dado lugar a teorías y técnicas matemáticas. Estos

conocimientos también son esenciales para los profesionales de la enseñanza, pues la geometría elemental está recuperando su puesto preeminente por su capacidad formativa. Contextualización dentro del grado en matemáticas:

Asignaturas más próximas: Geometrías Lineales (donde se continúa la formación 8 geométrica con el uso de coordenadas: geometría analítica o cartesiana). Geometría Diferencial de Curvas y Superficies, donde además se incorporan las técnicas del Cálculo Infinitesimal a la geometría. Por último a nivel más avanzado: Geometría Diferencial Topología y Ampliación de Topología. Además en todas las asignaturas de la carrera, la geometría está presente de uno u otro modo.

en "Código (

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA **ASIGNATURA**

Terminología y lenguaje matemático elemental, nociones de teoría de conjuntos y de sistemas de numeración, concretamente sobre números reales y racionales. Todos estos prerrequisitos se suponen adquiridos en Bachillerato, Educación Secundaria o el Curso de

Aunque no es estrictamente necesario, es recomendable haber cursado la asignatura del Grado de Matemáticas:

•Lenguaje matemático, conjuntos y números

EQUIPO DOCENTE

ANA MARIA PORTO FERREIRA DA SILVA Nombre y Apellidos

Correo Electrónico asilva@mat.uned.es

Teléfono 91398-7233

FACULTAD DE CIENCIAS Facultad

MATEMÁTICAS FUNDAMENTALES Departamento

Nombre y Apellidos ANTONIO FELIX COSTA GONZALEZ (Coordinador de asignatura)

Correo Electrónico acosta@mat.uned.es

Teléfono 91398-7224

Facultad FACULTAD DE CIENCIAS
Departamento MATEMÁTICAS FUNDAMENTALES

HORARIO DE ATENCIÓN AL ESTUDIANTE

El horario de atención al estudiante es: Martes lectivos de 10:30 a 13:30 y de 15:00 a 16:00 horas .

Correo electrónico: acosta@mat.uned.es y asilva@mat.uned.es
La tutorización y seguimiento se llevará a cabo sobre todo en los foros del curso virtual de la asignatura. Así las preguntas y respuestas serán visibles a todos los compañeros y también a signatura. asignatura. Así las preguntas y respuestas serán visibles a todos los compañeros y también asignatura. Así las preguntas y respuestas serán visibles a todos los compañeros y también se da la oportunidad a intercambiar ideas y que todos participen en los debates.

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones pipológicos.

en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

Consultar horarios de tutorización de la asignatura 61021105

en la Ámbito: GUI - La autenticidad, de "Código

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

Competencias Generales:

- Iniciativa y motivación CG1
- CG2 Planificación y organización
- CG3 Manejo adecuado del tiempo
- CG4 Análisis y Síntesis
- CG5 Aplicación de los conocimientos a la práctica
- CG6 Razonamiento crítico
- CG7 Toma de decisiones
- CG8 Seguimiento, monitorización y evaluación del trabajo propio o de otros
- CG9 Motivación por la calidad
- CG10 Comunicación y expresión escrita
- CG13 Comunicación y expresión matemática, científica y tecnológica
- CG14 Competencia en el uso de las TIC
- CG15 Competencia en la búsqueda de información relevante
- CG16 Competencia en la gestión y organización de la información
- CG18 Habilidad para coordinarse con el trabajo de otros
- CG19 Compromiso ético (por ejemplo en la realización de trabajos sin plagios, etc.)

Competencias específicas:

- Comprensión de los conceptos básicos y familiaridad con los elementos a fundamentales para el estudio de las Matemáticas superiores
- CED2 Destreza en el razonamiento cuantitativo, basado en los conocimientos adquiridos
- Habilidad para formular problemas de optimización, que permitan la toma de decisiones, así como la construcción de modelos matemáticos a partir de situaciones reales
- CEP4 Resolución de problemas
- Destreza en el razonamiento y capacidad para utilizar sus distintos tipos, fundamentalmente por deducción, inducción y analogía
- fundamentalmente por deducción, inducción y analogía
 CEA2 Capacidad para tratar problemas matemáticos desde diferentes planteamientos y su formulación correcta en lenguaje matemático, de manera que faciliten su análisis y resolución. Se incluye en esta competencia la representación gráfica y la aproximación geométrica
- CEA3 Habilidad para crear y desarrollar argumentos lógicos, con clara identificación de las
- hipótesis y las conclusiones

 CEA4 Habilidad para detectar inconsistencias de razonamiento ya sea de forma teórica o práctica mediante la búsqueda de contraejemplos
- CEA6 Habilidad para extraer información cualitativa a partir de información cuantitativa ESA7 Habilidad para presentar el razonamiento matemático y sus conclusiones de manera clara y precisa, de forma apropiada a la audiencia a la que se dirige, tanto en la forma oral como escrita

 CE1 Razonamiento crítico, capacidad de evaluar trabajos propios y ajenos

en la (CSV)"

RESULTADOS DE APRENDIZAJE

Conocimientos:

- •Conocimiento de la geometría euclidiana axiomática, sin coordenadas, tanto plana como espacial.
- •Conocimientos básicos sobre geometría hiperbólica.

Otros resultados son:

- Interpretación y resolución de problemas geométricos del plano y del espacio
- Visualización e intuición geométrica plana y espacial
- Modelización de la realidad
- Capacidad de razonamiento inductivo y deductivo
- Detección de errores lógicos
- Detección de consistencia de sistemas axiomáticos
- Cultura histórica de problemas matemáticos

CONTENIDOS

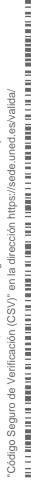
1. Espacios métricos

La palabra Geometría viene de medir y los espacios métricos son la estructura que se usa en matemáticas para este fin.

Este es un capítulo preliminar. La noción de medida y la estructura matemática donde se mide, los espacios métricos, nos acompañarán a lo largo de todo el curso.

2. Axiomas para la geometría euclidiana plana

Tema fundamental: se introduce la geometría euclidiana por medio de axiomas, como ya lo hizo Euclides en sus Elementos hace 2000 años.


Se estudia la geometría plana siguiendo el método axiomático que es usual en matemáticas. En este capítulo se introducen los axiomas y se establecen las primeras propiedades geométricas.

3. Isometrías del plano

Son las transformaciones del plano que conservan la distancia. Nos permiten mover objetos y figuras.

Las isometrías del plano se estudian clasificándose en cinco tipos: identidad, reflexiones, traslaciones, rotaciones y reflexiones con deslizamiento.

Ambito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el

4.Ángulos

El concepto de ángulo es fundamental en geometría. Se establecen algunas de las propiedades esenciales, por ejemplo que la suma de los ángulos de un triángulo es un ángulo llano (que es un teorema que depende esencialmente del axioma de las paralelas).

5.El teorema de Tales

El teorema de Tales es uno de los más importantes de la geometría euclidiana y sirve de fundamento para poder definir las razones trigonométricas de los ángulos.

6.El teorema de Pitágoras

No es necesario decir nada sobre la importancia del teorema de Pitágoras. En este capítulo se utilizará para obtener las fórmulas fundamentales para estudiar triángulos. Se introduce la geometría analítica plana.

7.Semejanzas

Las semejanzas son un tipo de transformaciones que permiten ampliar o reducir el tamaño de las figuras pero manteniendo otras propiedades geométricas invariantes (por ejemplo la medida de los ángulos). Son de gran utilidad y se presentan algunas aplicaciones.

8. Circunferencias

Las circunferencias son, con los triángulos, las figuras más importantes de la geometría euclidiana plana. Definiremos, usando las circunferencias, una nueva transformación del plano: la inversión.

9. Introducción a la geometría hiperbólica

La geometría hiperbólica es una geometría que se puede construir dentro de la geometría euclidiana y que verifica todos los axiomas de la geometría euclidiana salvo el axioma de las paralelas. De esta forma se prueba que tal axioma es independiente del resto, que era el problema abierto más famoso sobre los fundamentos de la geometría.

10.Polígonos. Construcciones con regla y compás

Los polígonos son las figuras que generalizan los triángulos. La posibilidad de construcción de polígonos regulares usando regla y compás generó un importante problema geométrico que los matemáticos han reducido a una cuestión sobre teoría de números.

∆mbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el

Código Seguro

11. Axiomas para la geometría euclidiana espacial

En este capítulo se introducen axiomas para la geometría espacial que modela la geometría del espacio que nos rodea. Se muestra la dificultad de los argumentos axiomáticos en este modelo. Se ofrece una introducción a la geometría analítica del espacio y a cómo construir la geometría en otras dimensiones usando la geometría analítica. La geometría analítica se estudiará con más profundidad en la asignatura Geometrías Lineales de segundo.

12. Isometrías del espacio

Se da la clasificación de las isometrías del espacio, de forma análoga a como se hizo en el plano, pero con características propias del espacio tridimensional.

13.Poliedros

Los poliedros son unas de las figuras más importantes del espacio. Los poliedros regulares o sólidos platónicos son, por su belleza e importancia, objetos que no pueden dejar de ser estudiados en un curso de geometría básica.

METODOLOGÍA

El estudio de cada capítulo se debe llevar a cabo del siguiente modo:

- estudio de cada capítulo se debe llevar a cabo del siguiente modo:

 Estudio de la teoría del texto base

 Planteamiento de dudas en los foros de la virtualización

 Realización de los ejercicios del texto base

 En la virtualización de la asignatura se encuentran numerosos materiales aplementarios de apoyo: vídeos, construcciones geogebra, enlaces a sitios de Internet, ...

 STEMA DE EVALUACIÓN

 D DE PRUEBA PRESENCIAL

 o de examen

 guntas desarrollo

 aguntas desarrollo

 aguntas desarrollo

 reción del examen

 Instrumentos de dibujo (reglas, compás)

 terios de evaluación complementarios de apoyo: vídeos, construcciones geogebra, enlaces a sitios de Internet, ...

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Preguntas desarrollo Duración del examen Material permitido en el examen

Criterios de evaluación

Se valorará principalmente la corrección matemática.

También se puntuará la redacción y presentación.

Todas las respuestas deben ir justificadas.

Se penalizarán los errores graves.

Cada ejercicio contará entre 3 y 4 puntos (esto se indica en el enunciado del examen)

90 % del examen sobre la nota final Nota del examen para aprobar sin PEC 5 10 Nota máxima que aporta el examen a la calificación final sin PEC

Nota mínima en el examen para sumar la 4 PEC

Comentarios y observaciones

Pese a haber señalado que el valor del examen sobre la nota final es del 90%, en realidad depende de si se realiza o no la PEC, ver final: ¿Cómo se obtiene la nota final?

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

Si ¿Hay PEC?

Descripción

La prueba consistirá en la resolución de uno o dos ejercicios prácticos y será depositada por el alumno en el curso virtual (en Entrega de Trabajos, donde podrá también ver el enunciado de los ejercicios).

La fecha de realización se anunciará en el curso virtual.

Criterios de evaluación

Se valorará principalmente la corrección matemática.

También se valorará la redacción y presentación.

Todas las respuestas deben ir justificadas.

Ponderación de la PEC en la nota final Hasta el 10 % ver apartado final ¿Cómo se obtiene la nota final?

Se anunciará en el curso virtual Fecha aproximada de entrega

Comentarios y observaciones

OTRAS ACTIVIDADES EVALUABLES

No ¿Hay otra/s actividad/es evaluable/s?

Descripción

Criterios de evaluación

Ponderación en la nota final

Fecha aproximada de entrega Comentarios y observaciones

0

"Código

¿CÓMO SE OBTIENE LA NOTA FINAL?

- 1. Si el estudiante realiza la PEC:
- a. Si obtiene en la Prueba Presencial o en la PEC una calificación inferior a 4: Nota final = Nota Prueba Presencial
- b. Si obtiene en la Prueba Presencial y en la PEC una calificación superior o igual a 4:

Nota final = min (Nota Prueba Presencial + Nota PEC×0,1, 10)

2. Si el estudiante no realiza la PEC o bien obtiene en la PEC una nota inferior a 4: Nota final = Nota Prueba Presencial

BIBLIOGRAFÍA BÁSICA

ISBN(13):9788416466801

Título:GEOMETRÍA BÁSICA (2018)

Autor/es:Costa, Antonio F.; Buser, Peter;

Editorial:SANZ Y TORRES

Es conveniente adquirir la última impresión-edición del texto, pues todos los años se corrigen las erratas detectadas.

El curso también se puede seguir usando el texto base antiguo:

Buser, Peter; Costa, Antonio F.: Curso de Geometría Básica, Sanz y Torres (a ser posible edición de 2014 o posterior).

Hay que cambiar de orden del estudio del último tema, corregir las erratas que están en las listas de erratas en la virtualización y ver algunas indicaciones en el plan de trabajo.

BIBLIOGRAFÍA COMPLEMENTARIA

Libros de un nivel parecido a la bibliografía básica:

- R. Fenn, Geometry, Springer, London 2001.
- D. W. Henderson and D. Taimina, Experiencing geometry, Euclidean and non-Euclidean with history, Pearson-Prentice Hall, Upper Saddle River, 2005.
- G. E. Martin, Foundations of Geometry and the Non-Euclidean Plane, Springer, New York,
- A. Reventós, Geometría axiomática, Institut d'estudis catalans, Barcelona 1993.
- J. R. Silvester, Geometry, ancient and modern, Oxford University Press, Oxford, 2001.
- S. Stahl, Geometry, form Euclid to knots, Prentice Hall, Upper Saddle River, 2003.
- J. Stillwell, The four pillars of geometry, Springer, New York 2005
- P. Ventura Araújo, Curso de geometría, Gradiva, Lisboa 1998.

Libros clásicos escritos por autores importantes:

UNED 10 CURSO 2020/21

- G. D. Birkhoff, R. Beatley, Basic Geometry, Chelsea, New York, 1959.
- H. S. M. Coxeter, Fundamentos de Geometría, Limusa-Wiley, México, 1971.
- H. S. M. Coxeter and S. L. Greitzer, Geometry revisited, New Mathematical Library, Mathematical of America, 1967. Hay una traducción es español de DSL Euler Editores, Madrid 1993.
- N. Efimov, Geometría Superior, MIR, Moscú 1984.
- H. Eves, Survey of Geometry in 2 vols, Allyn and Bacon, Boston, 1972.
- J. Hadamard, Leçons de géométrie élementaire, Editions Jacques Gabay, Sceaux, Reprint 1988.
- R. Hartshorne, Geometry: Euclid and beyond, Undergraduate Texts in Mathematics, Springer-Verlag, New York 2005.
- D. Hilbert and S. Cohn-Vossen, Geometry and imagination, Chelsea, New York, 1990.
- E. E. Moise, Elementary geometry from an advanced standpoint, Addison-Wesley, Reading, 1990
- P. Puig Adam, Curso de Geometría Métrica, Tomo I, Fundamentos, Editorial Euler, Madrid,
- A. Pogorelov, Geometry, Mir, Moscú, 1987.

Libros históricos:

- Euclides, Euclid's Elements (translator and editor T.L. Heath), Dover, New York, 1956.
- D. Hilbert, Fundamentos de la Geometría, CSIC, Madrid, Reprint 1996.
- Frère Gabriel-Marie, Exercices de Géométrie, Editions Jacques Gabay, Sceaux, Reprint 1991.

Otros libros de lectura de ampliación de alguno de los temas tratados:

- A.F. Costa, Una introducción a la simetría, UNED, Madrid, 2009.
- H.S.M. Coxeter, Regular Politopes, Dover, New York, 1973.
- P.R. Cromwell, Polyhedra, Cambridge University Press, Cambridge 1997.
- G. Guillén, El mundo de los poliedros, Ed. Síntesis, Madrid 1997.
- A. Reventós, Geometría inversiva, La Gaceta de la Real Sociedad Matemática Española, vol. 6. 2003.

RECURSOS DE APOYO Y WEBGRAFÍA

Programa Geogebra:

www.geogebra.org

Elementos de Euclides con figuras en Java:

mathcs.clarku.edu/~djoyce/java/elements/elements.html

Ambito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el

Código (

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el