GUÍA DE ESTUDIO DE LDI

CÓDIGO 01075257

2-08

FISICA DEL ESTADO SOLIDO II (FG) CÓDIGO 01075257

ÍNDICE

OBJETIVOS
CONTENIDOS
EQUIPO DOCENTE
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
SISTEMA DE EVALUACIÓN
HORARIO DE ATENCIÓN AL ESTUDIANTE

OBJETIVOS

Apoyándose en los conceptos básicos de la física del estado sólido introducidos en la asignatura correspondiente al primer cuatrimestre, se estudian las propiedades magnéticas y ópticas de los materiales, la superconductividad, los sistemas semiconductores de dimensionalidad reducida, y los sólidos amorfos. Complementa la asignatura Física del Estado Sólido I, por lo que se recomienda que cursen ésta con anterioridad.

CONTENIDOS

TEMA I. Procesos ópticos en los materiales.

Interacción luz- materia. Aproximación macroscópica: constantes ópticas; función dieléctrica. Absorción, reflectividad, reflectancia. Relaciones de Kramers-Kroning. Teoría clásica de la dispersión: modelo de Lorentz. Propiedades generales de la función dieléctrica. Absorción por la red: polarizabilidad iónica; polaritones. Absorción de portadores libres: transiciones intrabanda; plasmones. Transiciones interbanda. Excitones.

TEMA II. Propiedades magnéticas.

Momento magnético de electrones y átomos. Reglas de Hund. Interacción espín-órbita. Diamagnetismo. Paramagnetismo: ley de Curie; teoría cuántica. Paramagnetismo de Pauli: Diamagnetismo de Landau. Orden magnético. Interacción de canje. Ferromagnetismo: modelo de Weiss; la aproximación del campo medio. Antiferromagnetismo: modelo de Neél. Ondas de espín. Dominios magnéticos.

TEMA III. Superconductividad.

Superconductividad: concepto, factores que la destruyen. Efecto Meissner. Superconductividad tipo I y II. Modelo de London. Teoría de Ginzburg-Landau. Teoría BCS: rasgos cualitativos, pares de Cooper. Cuantización del flujo. Efectos Josephson.

TEMA IV. Estructuras semiconductoras de baja dimensionalidad.

Multipozos cuánticos y superredes. Estructura de bandas. Clasificación de las heteroestructuras. Propiedades electrónicas. Modelo de pozo cuántico. Densidad de estados bidimensional. Propiedades ópticas. Efecto Hall cuántico.

TEMA V. Sólidos amorfos.

Estado vítreo frente a cristalino. Estructura de los materiales amorfos: número de coordinación; función de distribución radial, métodos de determinación. Modelos estructurales. Propiedades electrónicas: densidad de estados, localización. Localización de Anderson. Borde de movilidad. Mecanismos de conductividad. Propiedades térmicas: calor específico, conductividad.

UNED 3 CURSO 2007/08

EQUIPO DOCENTE

BIBLIOGRAFÍA BÁSICA

GÓMEZ ANTÓN, A.: *Apuntes de Física del Estado Sólido II.* Estos apuntes se facilitarán exclusivamente a los alumnos matriculados en la asignatura. A este fin, se ruega que envíen **a la profesora de la asignatura** su dirección postal completa antes del 15 de diciembre de 2007. El material se remitirá, por partes, a los alumnos matriculados que lo hayan solicitado, a partir de febrero del 2008.

BIBLIOGRAFÍA COMPLEMENTARIA

ISBN(13):9788478290215

Título:ÓPTICA ELECTROMAGNÉTICA: FUNDAMENTOS

Autor/es:Cabrera, José Manuel; Agulló López, Fernando; López, Fernando Jesús;

Editorial:PEARSON ADDISON-WESLEY

No existe un libro que desarrolle el temario completo de la asignatura y que pueda servir de texto único de apoyo. Pueden resultarles de utilidad, para según qué temas:

KITTEL, C.: Introducción a la física del estado sólido. 3.ª edición. Ed. Reverté,1993.

ROSENBERG, H. M.: El estado sólido. Ed. Alianza Universidad, 1993. (Introductorio).

CABRERA, J. M.; LÓPEZ, F. J. y AGULLÓ, F.: Óptica electromagnética, vol. I.

Fundamentos. Ed. Addison-Wesley-UAM, 1998.

HERNANDO, A. y ROJO, J. M.: Física de los materiales magnéticos. Ed. Síntesis, 2001.

ELLIOT, S. R.: *Physics of amorphous materials*. 2.^a edición. Ed. Longman, 1990.

HOOK, J. R. y HALL, H. E.: Solid State Physics. 2.^a edición. Ed. John Wiley, 1991.

SINGH, J.: Physics of semiconductors and their heterostructures. Ed. McGraw-Hill, 1993.

TILLEY, D. R. y TILLEY, J.: Superfluidity and Superconductivity. 3.^a edición. Ed. Adam Hilger, 1993.

SISTEMA DE EVALUACIÓN

6.1. PRUEBAS DE EVALUACIÓN A DISTANCIA

El alumno recibirá unas pruebas de evaluación a distancia que habrá de resolver durante el cuatrimestre y remitir para su corrección en los plazos fijados, y siempre antes de realizar la prueba presencial.

6.2. PRUEBAS PRESENCIALES

Las pruebas presenciales están constituidas por cuestiones y/o ejercicios de nivel similar al de las pruebas de evaluación a distancia. Se permite la utilización de libros y calculadora.

6.3. CRITERIOS GENERALES DE EVALUACIÓN

La nota final será el resultado de la suma del 60% de la calificación obtenida en las

UNED 4 CURSO 2007/08

pruebas de evaluación a distancia y el 40% de la conseguida en las pruebas presenciales (examen), siempre que haya obtenido una calificación de al menos cuatro puntos sobre diez en cada una de ellas.

HORARIO DE ATENCIÓN AL ESTUDIANTE

Martes de 16 a 20 horas.

Despacho: 223
Tel.: 91 398 71 77
Fax: 91 398 81 76
Dirección postal:

D.a Ana Gómez Antón

Departamento de Física de los Materiales Facultad de Ciencias, UNED Apartado 60141 28080 Madrid

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 5 CURSO 2007/08