GUÍA DE ESTUDIO DE LDI

CÓDIGO 01084097

20-9

CALCULO NUMERICO II CÓDIGO 01084097

ÍNDICE

OBJETIVOS
CONTENIDOS
EQUIPO DOCENTE
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
SISTEMA DE EVALUACIÓN
HORARIO DE ATENCIÓN AL ESTUDIANTE

OBJETIVOS

CONTENIDOS

La asignatura de Cálculo Numérico II está dedicada al *tratamiento numérico de las* ecuaciones en derivadas parciales. Su estudio se desarrolla de acuerdo con el esquema siguiente:

- 1. Operadores diferenciales e interpolación
- 1. Discretización de una ecuación en derivadas parciales
- 2. Polinomios de dos variables
- 3. Interpolación de Lagrange en un triángulo
- 4. Interpretación algebraica de las funciones de forma
- 5. Interpolación y transformaciones afines
- 6. Interpolación en un triángulo con más grados de libertad
- 7. Interpolación de Lagrange en un rectángulo
- 8. Interpolación en un rectángulo con más grados de libertad
- 9. Operadores diferenciales discretos
- 1. Polinomio de Taylor
- 2. Error de discretización
- 3. Ecuaciones en derivadas parciales de primer orden
- 1. Un ejemplo de la Mecánica de los Medios Continuos
- 2. Un problema geométrico
- 3. Ecuaciones cuasilineales en el plano
- 4. Unicidad de la solución
- 5. Integrales primeras
- 6. Leyes de conservación
- 7. Condiciones de contorno
- 8. Soluciones periódicas
- 9. Singularidades y características
- 2.10. Formulación variacional
- 1. Discretización de las ecuaciones de primer orden
- 1. Introducción
- 2. Método numérico de las características
- 3. Método inverso de las características
- 4. Método de las líneas
- 5. Métodos de diferencias finitas
- 6. Esquemas básicos
- 1. Análisis de la convergencia de un esquema lineal

UNED 3 CURSO 2006/07

- 1. Convergencia de un esquema
- 2. Error de truncamiento
- 3. Orden de consistencia de un esquema
- 4. Difusión y dispersión
- 5. Esquemas de aguas arriba
- 6. Esquemas sin difusión
- 7. Ecuaciones de coeficientes variables
- 8. Expresión matricial de un esquema
- 9. Estabilidad
- 1. Condición de Courant-Friedrichs-Lewy
- 2. Método de von Neumann para el análisis de la estabilidad

1. Sistemas hiperbólicos

- 1. Introducción
- 2. Sistemas lineales de coeficientes constantes
- 3. Ecuación de las ondas
- 4. Caso límite de un sistema hiperbólico
- 5. Sistemas lineales de coeficientes variables
- 6. Método de las características
- 7. Métodos de diferencias finitas
- 8. Esquemas en diferencias finitas específicos para la ecuación de lasondas
- 9. Esquemas implícitos

1. Ecuaciones en derivadas parciales de segundo orden

- 1. Modelos matemáticos de la difusión del calor
- 2. Formas canónicas de las ecuaciones
- 3. Ecuaciones de coeficientes variables
- 4. Curvas características

5. Ecuaciones elípticas. Métodos de diferencias finitas

- 1. Ecuaciones de Laplace y Poisson
- 2. Principio del máximo
- 3. Laplaciano discreto
- 4. Problema discreto de Dirichlet
- 5. Principio del máximo discreto
- 6. Convergencia
- 7. Dominios que no son rectangulares. Redes que no son uniformes
- 8. Condiciones de Neumann discretas
- 9. Dificultades para la puesta en práctica del método
- 1. Métodos iterativos

UNED 4 CURSO 2006/07

- 2. Análisis de la convergencia
- 3. Ecuaciones parabólicas unidimensionales
- 1. Problemas de difusión lineal
- 2. El efecto regularizante de la evolución
- 3. Método de las líneas
- 4. Métodos explícitos
- 5. Métodos implícitos
- 6. Error de truncamiento
- 7. Convergencia
- 8. Análisis de la estabilidad según von Neumann
- 9. Formulación variacional de problemas elípticos en el plano
- 1. Introducción
- 2. Formulación débil
- 3. Equivalencia de las formulaciones
- 4. Norma de Sobolev
- 5. Métodos de Galerkin
- 10. Métodos de elementos finitos en el plano
- 1. Interpolación en un polígono partido en triángulos
- 2. Transformaciones discretas en el plano
- 3. Elementos finitos isoparamétricos
- 4. Método de los elemento finitos
- 5. Proceso de ensamblado
- 6. Ensamblado de la matriz de rigidez y el vector de carga en el elemento
- 7. Convergencia del método

EQUIPO DOCENTE

BIBLIOGRAFÍA BÁSICA

Las lecciones anteriores están desarrolladas en las **Unidades Didácticas: Cálculo numérico II (Métodos numéricos de resolución de ecuaciones en derivadas parciales).** C. MORENO. UNED. 1999.

Toda la información sobre material complementario y prácticas estará disponible en la página web de la asignatura.

UNED 5 CURSO 2006/07

BIBLIOGRAFÍA COMPLEMENTARIA

En relación con los temas desarrollados pueden consultarse los textos:

DUCHATEAU, P. y ZACHMAN, D. W.: *Ecuaciones diferenciales parciales*. McGraw-Hill. Serie Schaum, 1988.

HALL, C. A. y PORSHING, T. A.: *Numerical analysis of partial differential equations*. Cambridge University Press. 1990.

LeVEQUE, R. J.: Numerical methods for conservation laws. Birkhauser, 1992.

STRIKWEDA, J. C.: Finite difference schemes and partial differential equations. Chapman and Hall, 1989.

SISTEMA DE EVALUACIÓN

5.1. PRUEBAS PRESENCIALES

Las pruebas presenciales consistirán en la resolución de diversos ejercicios, similares a los desarrollados en las Unidades Didácticas.

HORARIO DE ATENCIÓN AL ESTUDIANTE

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 6 CURSO 2006/07