GUÍA DE ESTUDIO PÚBLICA

GENERACIÓN DE ENERGÍA ELÉCTRICA

CÓDIGO 6801415-

19-20

GENERACIÓN DE ENERGÍA ELÉCTRICA CÓDIGO 6801415-

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

EQUIPO DOCENTE

HORARIO DE ATENCIÓN AL ESTUDIANTE

TUTORIZACIÓN EN CENTROS ASOCIADOS

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

RESULTADOS DE APRENDIZAJE

CONTENIDOS

METODOLOGÍA

SISTEMA DE EVALUACIÓN

BIBLIOGRAFÍA BÁSICA

BIBLIOGRAFÍA COMPLEMENTARIA

RECURSOS DE APOYO Y WEBGRAFÍA

ADENDA AL SISTEMA DE EVALUACIÓN CON MOTIVO DE LA PANDEMIA COVID 19

UNED 2 CURSO 2019/20

GENERACIÓN DE ENERGÍA ELÉCTRICA Nombre de la asignatura

Código 6801415-Curso académico 2019/2020

Título en que se imparte **CURSO - PERIODO**

INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y Departamento

QUÍMICA APLICADA A LA INGENIERÍA GRADO EN INGENIERÍA ELÉCTRICA

GRADUADO EN INGENIERÍA ELÉCTRICA - CUARTOCURSO

- SEMESTRE 1

CURSO - PERIODO ESPECÍFICA DEL PLAN 2001 UNED

- OPTATIVASCURSO

- SEMESTRE 1

OBLIGATORIAS Tipo

Nº ETCS 5 Horas 125.0

CASTELLANO Idiomas en que se imparte

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La asignatura GENERACIÓN DE ENERGÍA ELÉCTRICA se encuentra ubicada en el primer cuatrimestre del cuarto curso del Grado de Ingeniería Eléctrica de la UNED. El sector de la energía aporta el 3,6% del PIB y el 1,4% del empleo y es de importancia estratégica para el funcionamiento de todo el sistema productivo español. Dentro de él está incluido el de la energía eléctrica, donde participan diversos actores: los que se encargan de producirla, los que la transportan, los que la distribuyen y finalmente, los que la consumimos. Esta asignatura, se va a detener en exclusiva en el primero de los aspectos, la generación. La asignatura constituye el desarrollo de uno de los pilares de la Ingeniería Eléctrica como es la generación de la energía eléctrica, que por situarse en el último curso del Grado tiene en si misma carácter terminal.

Desde siempre el desarrollo de la humanidad ha estado determinado en gran medida por el recurso a la utilización de las diferentes formas de energía según las necesidades y disponibilidades de cada momento y lugar. Ya en sus inicios, los principales recursos estaban basados en la utilización de energías renovables en forma de biomasa, viento, agua y sol. Utilizados principalmente como fuente de combustible, estos elementos deben ser considerados como la base energética del desarrollo humano.

El objetivo de la asignatura es estudiar primero la energía y sus diferentes fuentes con una visión general, en primer lugar, posteriormente se aborda del tema de la generación de energía eléctrica mediante el estudio de los elementos que así lo permiten: los alternadores, y de sus bloques de control. Finalizando por un estudio pormenorizado de las centrales que utilizan recursos renovables para su utilización.

CURSO 2019/20 **UNED** 3

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

Para abordar con unas mínimas garantías de éxito esta asignatura apenas son necesarios otros conocimientos previos a los más básicos cursados en las asignaturas troncales estudiadas previamente en el Grado, si acaso debe tener unos sólidos conocimientos de electromagnetismo (vistos en las asignaturas de Física y de Campos y ondas) y de electrotecnia...

EQUIPO DOCENTE

Nombre y Apellidos JOSE CARPIO IBAÑEZ (Coordinador de asignatura)

Correo Electrónico jcarpio@ieec.uned.es

Teléfono 91398-6474

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LÁ INGENIERÍA

Nombre y Apellidos JOSE CARPIO IBAÑEZ (Coordinador de asignatura)

Correo Electrónico jose.carpio@ieec.uned.es

Teléfono 91398-6474

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LA INGENIERÍA

Nombre y Apellidos JAIME LUIS RAMIS OLIVER

Correo Electrónico jramis@ieec.uned.es

Teléfono 619255729

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LÁ INGENIERÍA

HORARIO DE ATENCIÓN AL ESTUDIANTE

La tutorización de los alumnos se llevará a cabo a través de la plataforma de e-Learning, y preferentemente directamente por teléfono o e-mail con el equipo docente:

Lunes de 16:00 a 20:00

Gumersindo Queijo. Telf. 91-398.64.74 e-mail:gumer@ieec.uned.es

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

UNED 4 CURSO 2019/20

La información ofrecida respecto a las tutorías de una asignatura es orientativa. Las asignaturas con tutorías y los horarios del curso actual estarán disponibles en las fechas de inicio del curso académico. Para más información contacte con su centro asociado. Consultar horarios de tutorización de la asignatura 6801415-

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

COMPETENCIAS DEL GRADO (ORDEN CIN 351-2009)

COMPETENCIAS GENERALES:

- •CG1. -Capacidad para la redacción, firma y desarrollo de proyectos en el ámbito de la ingeniería industrial que tengan por objeto, de acuerdo con los conocimientos adquiridos según lo establecido en el apartado 5 de la orden CIN/351/2009, la construcción, reforma, reparación, conservación, demolición, fabricación, instalación, montaje o explotación de: estructuras, equipos mecánicos, instalaciones energéticas, instalaciones eléctricas y electrónicas, instalaciones y plantas industriales y procesos de fabricación y automatización.
- •CG2. -Capacidad para la dirección, de las actividades objeto de los proyectos de ingeniería descritos en el epígrafe anterior.
- •CG3. -Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- •CG4. -Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.
- •CG5. -Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planes de labores y otros trabajos análogos.
- •CG6. -Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
- •CG 7. Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas.
- •CG10. -Capacidad de trabajar en un entorno multilingüe y multidisciplinar.
- •CG11. -Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Técnico Industrial.

COMPETENCIAS ESPECÍFICAS DE LA RAMA ELÉCTRICA:

- •CTE ELC 6. -Conocimiento sobre sistemas eléctricos de potencia y sus aplicaciones.
- •CTE ELC 9. -Capacidad para el diseño de centrales eléctricas.
- •CTE ELC 10. -Conocimiento aplicado sobre energías renovables.

OTRAS COMPETENCIAS:

•Comprensión de textos técnicos en lengua inglesa.

UNED 5 CURSO 2019/20

- Comunicación y expresión matemática, científica y tecnológica.
- •Manejo de las tecnologías de la información y comunicación (TIC).
- Capacidad para gestionar información.

(OBSERVACIONES: Memoria del Grado en proceso de revisión)

RESULTADOS DE APRENDIZAJE

A partir de los objetivos básicos de la asignatura, se establecen los resultados del aprendizaje previstos:

- •Identificar las principales variables tecnológicas de los diferentes procesos que interviene en el actual sistema energético.
- •Localizar y comprender las principales fuentes de energía no agotables.
- •Conocer los fundamentos de los equipos y técnicas empleadas actualmente en el diseño de sistemas de aprovechameinto de las energías renovables.
- •Conocer metodologías de investigación en el campo de obtención de electricidad a partir de fuentes de energía renovables.
- •Entender la necesidad de avanzar hacia la generación distribuida con el apoyo de las redes inteligentes.

CONTENIDOS

TEMA I. Centrales eléctricas.

•Clasificación de las centrales eléctricas: convencionales (hidráulicas, térmicas y nucleares) y centrales con EERR.

Descripción y principio de funcionamiento de cada tipo de central. Las centrales eléctricas del Sistema Eléctrico Nacional.

•Servicios auxiliares de las centrales eléctricas. La subestación de salida.

TEMA 2 El generador síncrono

- •Funcionamiento de la máquina
- •Los bucles de control del generador.
- •Acoplamiento del alternador a la red.
- Protecciones del alternador. Corrientes de cortocircuito. El problema de la estabilidad transitoria.

UNED 6 CURSO 2019/20

TEMA 3 El generador asíncrono

- •Funcionamiento de la máquina
- •Estructuras de los diferentes alternadores utilizados en los sistemas de generación eólicos.
- •Elementos de control del generador.
- •Acoplamiento del alternador a la red.
- •Protecciones del alternador. Corrientes de cortocircuito.

TEMA 4 Centrales eólicas. y centrales fotovoltaicas

- •Condiciones de operación
- •Conexión del generador asíncrono.
- •El inversor de potencia
- Costes asociados

TEMA 5. Otras centrales con EE.RR. Generación distribuida y autoconsumo.

- •Descripción de los diferentes tipos de centrales
- •Solar térmica características y uso
- •Generación distribuido características y uso
- •Autoconumo: Caracteristicas y uso

TEMA 6 Almacenamiento de energía: centrales reversibles y Baterias

•Centrales de bombeo: descripción, tipo y rendimiento

•Baterias: descripción tipo y rendimiento

METODOLOGÍA

La metodología es la general del programa de grado. Junto a las actividades y enlaces con fuentes de información externas, existe material didáctico propio preparado por el equipo docente. Adaptado a las directrices del EEES, de acuerdo con el documento del IUED. La asignatura no tiene clases presenciales y los contenidos se impartirán a distancia, de acuerdo con las normas y estructuras de soporte telemático de la enseñanza en la UNED. El material docente incluye un resumen de los contenidos de cada tema y distintos tipos de actividades relacionadas con la consulta bibliográfica, consulta de información en Internet, trabajos de análisis y resumen, uso de herramientas software, e implementación de páginas web conforme a las directrices mostradas.

La asignatura se divide en tres bloques temáticos:

A.- En un primer bloque temático, que corresponde con el tema 1, se analiza el sistema energético, en ellos se abordan aspectos básicos generales sobre los tipos de centrales más importantes que se utilizan actualmente.

UNED 7 CURSO 2019/20

- B.- El segundo bloque temático está constituido por los temas 2 y 3 en donde se describen las máquinas utilizadas para la conversión a energía eléctrica: los alternadores, tanto síncronos como asíncronos, utilizados en la actualidad.
- C,- El tercer bloque está constituido por los temas 4 5 y 6 dedicados a la generación con energías renovables y al almacenamiento de la energía eléctrica,

Al final de cada tema se presenta una batería de veinte ejercicios tipo test.

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Examen mixto

Preguntas test 5
Preguntas desarrollo 4

Duración del examen 120 (minutos)

Material permitido en el examen

Para la realización de la prueba el estudiante no podrá utilizar ningún tipo de material excepto calculadora no programable

Criterios de evaluación

La Prueba Presencial constará de:

Un test con cinco cuestiones.

Tres preguntas conceptuales o problemas

Un tema de desarrollo

Cada una de las tres preguntas se calificará de 0 a 2 puntos y el tema de 0 a 4 puntos. El test no puntúa, siendo condición necesaria para ser evaluado el resto del examen acertar al menos tres cuestiones (las incorrectas no restan). Tanto en el tema de desarrollo como en las tres cuestiones de síntesis, se valrará especialmete, además del rigor en el detalle de los contenidos, la presencia de esquemas, figuras, diagramas ilustrativos.

% del examen sobre la nota final
Nota del examen para aprobar sin PEC
Nota máxima que aporta el examen a la
calificación final sin PEC
Nota mínima en el examen para sumar la
PEC

Comentarios y observaciones

En el caso de esta asignatura la PEC equivale a una PAE (Prueba de Auto Evaluación), de realización voluntaria, pero aconsejable y no puntua para la media de la nota final.

En los apartados sucesibos cuando se hable de PEC nos estaremos refiriendo al TF (Trabajo Final), que sí puntua para la calificación final de la asignatura.

UNED 8 CURSO 2019/20

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC? Si

Descripción

PEC = TF (Trabajo Final):

La propuesta de Trabajo Final de la asignatura la formulará el Equipo Docente a mitad del curso, a trevés del curso virtual. Su caracter es obligatorio.

Criterios de evaluación

La fecha tope de entrega del TF será el 20 de enero. Aunque se recomienda hacerlo antes del 10 de enero con el objeto de poder tener opción a una revisión y devolución para corregir errores, los entregados después del 10 de enero se entenderá que renunciaran a esa posibilidad.

Las dudas referentes a cómo realizar este trabajo se atenderán por teléfono (91 398 64 74) en el día de guardia, en la plataforma virtual del curso Alf o bien por correo electrónico gumer@ieec.uned.es.

Tal y como se apunta en la guía de la asignatura la nota de este trabajo tendrá el peso del 20% sobre la calificación final de la misma, siempre y cuando se obtenga más de un 4 en la PP.

Ponderación de la PEC en la nota final

20%, el TF (Trabajo Final)

Fecha aproximada de entrega

20/02/2020

Comentarios y observaciones

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s? No

Descripción

Criterios de evaluación

Ponderación en la nota final 0

Fecha aproximada de entrega Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

80% Examen + 20% TF

BIBLIOGRAFÍA BÁSICA

ISBN(13):9788497322836

Título:SISTEMAS DE ENERGÍA ELÉCTRICA

Autor/es:Barrero González, Fermín;

Editorial:THOMSON PARANINFO,S.A.

IMPORTANTE: Y descargue en el curso virtual él documento "Orientaciones para el estudio" en el se que explican y detallan todos los cambios que se han introducido para el desarrollo

UNED 9 CURSO 2019/20

y evaluación de la asignatura y que el estudiante debe tener presente para estudiar la asignatura.

BIBLIOGRAFÍA COMPLEMENTARIA

En el curso virtual y en la guía de "Orientaciones para el estudio" se detalla la bibliografía complementaria que sugerimos al estudiante para que pueda ampliar los contenidos de la asignatura.

RECURSOS DE APOYO Y WEBGRAFÍA

- Curso virtual.

La plataforma virtual de la UNED (aLF), proporcionará el adecuado interfaz de interacción entre el alumno y sus profesores. aLF es una plataforma de e-Learning y colaboración que permite impartir y recibir formación, gestionar y compartir documentos, crear y participar en comunidades temáticas, así como realizar proyectos online.

Cualquier otro material que se ponga a disposición del estudiante se publicará en el curso virtual.

ADENDA AL SISTEMA DE EVALUACIÓN CON MOTIVO DE LA PANDEMIA COVID 19

https://app.uned.es/evacaldos/asignatura/adendasig/6801415-

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 10 CURSO 2019/20