GUÍA DE ESTUDIO PÚBLICA

SISTEMAS DINÁMICOS

CÓDIGO 61044098

22-23

SISTEMAS DINÁMICOS CÓDIGO 61044098

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN
REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA
ASIGNATURA
EQUIPO DOCENTE
HORARIO DE ATENCIÓN AL ESTUDIANTE
TUTORIZACIÓN EN CENTROS ASOCIADOS
COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE
RESULTADOS DE APRENDIZAJE
CONTENIDOS
METODOLOGÍA
SISTEMA DE EVALUACIÓN
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
RECURSOS DE APOYO Y WEBGRAFÍA

UNED 2 CURSO 2022/23

Nombre de la asignatura

Código

Curso académico Departamento

Título en que se imparte CURSO - PERIODO

Título en que se imparte CURSO - PERIODO

Tipo Nº ETCS

Horas

Idiomas en que se imparte

SISTEMAS DINÁMICOS

61044098 2022/2023

FÍSICA FUNDAMENTAL

GRADO EN MATEMÁTICAS

- CUARTO CURSO

- SEMESTRE 2

GRADO EN FÍSICA

- CUARTO CURSO

- SEMESTRE 2

OPTATIVAS

5

125.0

CASTELLANO

PRESENTACIÓN Y CONTEXTUALIZACIÓN

Esta asignatura tiene carácter de optativa en 4º curso del Grado en Física y del Grado en Matemáticas, cuando los/as estudiantes ya disponen de conocimientos sufientes sobre ecuaciones diferenciales y mecánica. Sus objetivos princpales son la introducción del concepto de estabilidad de las soluciones de los sistemas dinámicos, la teoría de bifurcaciones y la teoría cualitativa de sistemas no lineales, así como una introducción al comportamiento caótico de sistemas deterministas.

En la estructura del Grado en Física, esta asignatura se encuadra dentro de la materia denominada *Mecánica*, que se compone de tres asignaturas obligatorias:

- •Mecánica (6 ECTS), obligatoria, 2º curso, 1er semestre.
- •Vibraciones y ondas (6 ECTS), obligatoria, 2º curso, 2º semestre.
- •Mecánica Teórica (6 ECTS), obligatoria, 4º curso, 1er semestre.

La asignatura se imparte en el segundo semestre del 4º año del Grado y tiene carácter optativo. Dentro de esta materia general, el objetivo de la asignatura de Sistemas Dinámicos consiste en el estudio de las soluciones de las ecuaciones de evolución, discutiendo si son estables o inestables, si los sistemas pueden pasar de una solución a otra (bifurcaciones) y qué se puede averiguar respecto al comportamiento dinámico del sistema a partir del estudio cualitativo de su espacio de fase. Un segundo objetivo es la presentación del papel crucial que juegan los términos no lineales en el comportamiento de los sistemas dinámicos. Finalmente, también se presenta una introducción al comportamiento caótico de los sistemas deterministas.

UNED 3 CURSO 2022/23

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

La asignatura de Sistemas Dinámicos se ofrece a estudiantes de cuarto curso de los Grados en Física y Matemáticas de la UNED. Por ello, se espera un conocimiento suficiente de ambas disciplinas.

- •Respecto de la **Física**, es imprescindible comprender los conceptos de ecuaciones del movimiento basadas en las leyes de Newton de la dinámica, así como los conceptos de trabajo y de energía y los elementos básicos de las oscilaciones, tanto mecánicas como eléctricas. Para estudiantes del Grado en Matemáticas recomendamos repasar la asignatura de Física, cursada el segundo cuatrimestre de primer curso, si bien el grado de madurez científica esperado es superior.
- •Respecto de las **Matemáticas**, es imprescindible el manejo teórico y práctico de las ecuaciones diferenciales ordinarias, así como los conceptos básicos de las ecuaciones en derivadas parciales. De nuevo, el grado de madurez será superior al exigido en asignaturas previas, con un énfasis mayor en el análisis cualitativo de las soluciones.
- •Los Sistemas Dinámicos constituyen un área de intersección entre las Matemáticas, la Física, la Química, la Biología, la Ingeniería y otras ramas del conocimiento, de modo que las aplicaciones analizadas serán tomadas de todas estas áreas indistintamente, proporcionando siempre el contexto científico requerido para su correcta interpretación.
- •La asignatura se imparte con un texto básico en **inglés**, luego es necesario un conocimiento del inglés que permita la lectura y comprensión fluida de textos científicos y técnicos.
- •Asimismo se espera que los/as estudiantes puedan realizar pequeñas **simulaciones numéricas** de los sistemas dinámicos propuestos, en el lenguaje de programación o plataforma de cálculo de su elección.

EQUIPO DOCENTE

HORARIO DE ATENCIÓN AL ESTUDIANTE

La asignatura se imparte virtualizada, de modo que los estudiantes tienen la posibilidad de entrar en cualquier momento en el Curso Virtual y plantear sus consultas al Equipo Docente, en los foros y a través de las herramientas de comunicación del curso virtual.

Horario de atención al alumno

El estudiante puede contactar en todo momento a través del curso virtual o por correo electrónico con el equipo docente.

Horarios de tutoría y datos de contacto

Para cualquier consulta personal o telemática los profesores del equipo docente estarán disponibles en los dìas y horas que se indican a continuación, excepto en vacaciones

UNED 4 CURSO 2022/23

académicas. En caso de que el día correspondiente sea festivo, la tutoría se desplazará al siguiente día lectivo.

Adolfo Vázquez Quesada, Dto. Física Fundamental, Biblioteca de la UNED.

a.vazquez-quesada@fisfun.uned.es

Miércoles de 10:00 a 14:00 horas.

Javier Rodríguez Laguna, Dto. Física Fundamental, Biblioteca de la UNED.

jrlaguna@fisfun.uned.es

Miércoles de 16:00 a 20:00 horas.

Dirección postal.

Edificio Biblioteca UNED, planta 1 (Mediateca).

Paseo Senda del Rey 5. 28040 Madrid, España.

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

Consultar horarios de tutorización de la asignatura 61044098

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

Competencias generales

- CG01 Capacidad de análisis y síntesis
- CG03 Comunicación oral y escrita en la lengua nativa
- CG04 Conocimiento de inglés científico en el ámbito de estudio
- CG09 Razonamiento crítico
- CG10 Aprendizaje autónomo

Competencias específicas

CE01 Tener una buena comprensión de las teorías físicas más importantes: su estructura lógica y matemática, su soporte experimental y los fenómenos que describen; en especial, tener un buen conocimiento de los fundamentos de la física moderna

CE03 Tener una idea de cómo surgieron las ideas y los descubrimientos físicos más importantes, cómo han evolucionado y cómo han influido en el pensamiento y en el entorno natural y social de las personas

CE04 Ser capaz de identificar las analogías en la formulación matemática de problemas físicamente diferentes, permitiendo así el uso de soluciones conocidas en nuevos problemas CE05 Ser capaz de entender y dominar el uso de los métodos matemáticos y numéricos más comúnmente utilizados, y de realizar cálculos de forma independiente, incluyendo cálculos numéricos que requieran el uso de un ordenador y el desarrollo de programas de software

CE06 Haberse familiarizado con los métodos experimentales más importantes y ser capaz

UNED 5 CURSO 2022/23

de diseñar experimentos de forma independiente, así como de describir, analizar y evaluar críticamente los datos experimentales

CE07 Ser capaz de identificar los principios físicos esenciales que intervienen en un fenómeno y hacer un modelo matemático del mismo; ser capaz de hacer estimaciones de órdenes de magnitud y, en consecuencia, hacer aproximaciones razonables que permitan simplificar el modelo sin perder los aspectos esenciales del mismo

CE08 Ser capaz de adaptar modelos ya conocidos a nuevos datos experimentales

CE09 Adquirir una comprensión de la naturaleza y de los modos de la investigación física y de cómo ésta es aplicable a muchos campos no pertenecientes a la física, tanto para la comprensión de los fenómenos como para el diseño de experimentos para poner a prueba las soluciones o las mejoras propuestas

CE10 Ser capaz de buscar y utilizar bibliografía sobre física y demás literatura técnica, así como cualesquiera otras fuentes de información relevantes para trabajos de investigación y desarrollo técnico de proyectos

RESULTADOS DE APRENDIZAJE

- •Comprender los conceptos relacionados con la estabilidad de las soluciones y ser capaz de analizar si una determinada solución estacionaria es estable o inestable
- •Entender las diferencias y características de los puntos fijos de sistemas dinámicos y ser capaz de clasificarlos.
- Ser capaz de analizar cualitativamente el espacio de fases de sistemas dinámicos lineales y no lineales.
- •Conocer los principales tipos de bifurcaciones locales y sus formas normales, así como ser capaz de clasificarlas.
- •Ser capaz de aplicar los criterios de existencia de ciclos límite y de utilizar las ecuaciones promediadas de sistemas débilmente nolineales.
- •Comprender la diferencia entre bifurcaciones locales y globales.
- •Entender las diferencias conceptuales entre sistemas dinámicos de diferente dimensionalidad.
- •Conocer y ser capaz de identificar los ingredientes básicos de un comportamiento caótico.

CONTENIDOS

Tema 1.- Sistemas continuos unidimensionales

Tema 2.- Bifurcaciones en sistemas unidimensionales

UNED 6 CURSO 2022/23

Tema 3.- Sistemas lineales bidimensionales

Tema 4.- Ciclos límite

Tema 5.- Teoría general de bifurcaciones

Tema 6.- Las ecuaciones de Lorenz

Tema 7.- Aplicaciones discretas unidimensionales

METODOLOGÍA

La asignatura se imparte a través del correspondiente curso virtual. En dicho curso virtual habrá Foros de debate específicos por temas. La intención de esos foros es que se genere debate entre los estudiantes respecto a conceptos o aplicaciones de los mismos que no estén bien entendidos, planteando dudas o cuestiones que surjan en el estudio de la asignatura. De esta forma, tanto las dudas planteadas como las respuestas podrán ser de utilidad para el resto de los estudiantes.

La participación activa en el debate de esas dudas o cuestiones será siempre bien considerada por parte del Equipo Docente y solamente podrá tener consecuencias positivas en la calificación de los estudiantes; los posibles errores, de concepto o de desarrollo, nunca repercutirán negativamente en la evaluación del estudiante.

Se pretende que en esos foros se inicien los debates planteando dudas o preguntas libremente, pero siempre acompañándoles de la respuesta que se haya meditado al respecto, aunque sea equivocada, indicando por qué se tienen dudas sobre la misma. El Equipo Docente moderará la discusión, comentará las aportaciones más relevantes, cuando sea preciso, y dará la solución correcta si el debate entre los estudiantes no converge hacia dicha solución en un tiempo prudencial.

Además, a través de las herramientas de comunicación del Curso Virtual los alumnos pueden plantear sus dudas al Equipo Docente.

El curso comprende cinco ECTS, equivalentes a 125 horas de trabajo del estudiante. Para la realización de todas las actividades que constituyen el estudio de la asignatura, el estudiante deberá organizar y distribuir su tiempo de forma personal y autónoma, adecuada a sus necesidades. En la siguiente sección (Plan de trabajo) se sugiere una posible organización temporal para orientación de los estudiantes.

UNED 7 CURSO 2022/23

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Examen de desarrollo

Preguntas desarrollo

Duración del examen 120 (minutos)

Material permitido en el examen

Todo tipo de material impreso.

Calculadora científica no programable.

Criterios de evaluación

Se valorará la consecución de soluciones correctas a los problemas planteados.

Se valorará una justificación adecuada y una exposición correcta y clara de cada uno de los pasos no triviales en la solución de los problemas planteados.

% del examen sobre la nota final 0
Nota del examen para aprobar sin PEC 5
Nota máxima que aporta el examen a la calificación final sin PEC
Nota mínima en el examen para sumar la 0
PEC

Comentarios y observaciones

Se trata de un **Examen presencial final obligatorio** escrito, de dos horas de duración, que consistirá, fundamentalmente, en la realización de problemas, que serán similares a los que se incluyen al final de cada capítulo en el libro de texto básico, o a los que se recogen en la colección de problemas resueltos que se proporciona a los estudiantes a través del curso virtual.

Se permitirá el uso de libros y material auxiliar durante la realización del examen. Este examen se realizará según el sistema general de Pruebas Presenciales de la UNED. Representará entre el 80% y el 100% de la calificación final, dependiendo de si se realizan o no las pruebas de evaluación continua (prueba objetiva on line y realización de trabajos).

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC? Si Descripción

UNED 8 CURSO 2022/23

Prueba Objetiva en línea (VOLUNTARIA)

Se trata de una prueba objetiva en línea, de realización voluntaria, a través de la herramienta Quiz dentro de la plataforma de cursos virtuales de la UNED. Consistirá en 10 cuestiones cortas teórico-prácticas de respuesta múltiple y sobre la materia correspondiente a la parte del temario que se haya impartido en el momento en el que se celebre la prueba, de acuerdo con la programación de la asignatura.

La contribución máxima de esta prueba a la calificación final de la asignatura es de 1 punto (10% de la calificación final). Será necesario obtener una calificación de 5 puntos, como mínimo, en esta prueba objetiva para que contribuya a la calificación final de la asignatura. Esta prueba no es obligatoria, y para los estudiantes que no la realicen su porcentaje de la nota final se sumará al adjudicado al examen presencial final.

Criterios de evaluación

Al ser una prueba objetiva se aplicarán las siguientes valoraciones:

Por cada respuesta acertada: 1 punto. Por cada respuesta errónea: -0.5 puntos.

Ponderación de la PEC en la nota final 10%

Fecha aproximada de entrega La fecha se anunciará en el curso virtual

Comentarios y observaciones

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s? Si Descripción

Realización de un trabajo académico (VOLUNTARIO)

Los trabajos deberán ser aprobados por el Equipo Docente a propuesta de los propios estudiantes y podrán ser de tipo teórico (ampliación de conceptos o temas tratados en el curso) o prácticos (realización de problemas, simulaciones numéricas, etc.).

La contribución máxima de estos trabajos a la calificación final de la asignatura es de 1 punto (10% de la calificación final). Estos trabajos no son obligatorios y para los alumnos que no los realicen su porcentaje de la nota final se sumará al adjudicado al examen presencial final.

Criterios de evaluación

Se valorarán:

La iniciativa del estudiante a la hora de proponer el tema del trabajo.

La adecuación del tema propuesto a la asignatura.

La adecuación de la bibliografía seleccionada.

La realización de desarrollos analíticos y simulaciones numéricas.

La originalidad y corrección del desarrollo.

Los aspectos lingüísticos formales (ortografía, sintaxis, claridad de la exposición, etc.).

Ponderación en la nota final 10%

Fecha aproximada de entrega La fecha se anunciará en el curso virtual

UNED 9 CURSO 2022/23

Comentarios y observaciones

El trabajo puede ser tanto analítico como de simulación y lo ideal sería que tuviese componentes de ambos aspectos.

El tema y el plan de cada trabajo tienen que ser acordados previamente con el equipo docente.

Los trabajos se pueden realizar en equipos de no más de dos personas.

Aunque el trabajo se haya hecho en equipo, el informe tiene que ser individual, es decir, cada uno de los dos miembros del equipo deberá presentar un informe independiente.

Los listados de los programas o scripts utilizados para cada figura deberán ser incluidos como apéndices al final del trabajo.

La longitud total del trabajo no podrá ser superior a 20 páginas DIN A4 (sin contar el espacio dedicado a bibliografía y programas de ordenador, en su caso).

¿CÓMO SE OBTIENE LA NOTA FINAL?

Para aprobar la asignatura será necesario obtener una calificación final igual o superior a 5 puntos. Las calificaciones en la PEC y el trabajo académico solamente se tendrán en cuenta para el cómputo de la nota final si son superiores a 5 puntos. La calificación final se obtendrá de la siguiente forma:

Si el estudiante ha realizado el examen presencial, y superado la PEC y el trabajo académico:

[nota final] = 0,8 * [nota de examen presencial] + 0,1 * [nota PEC] + 0,1 * [nota de trabajo]

Si el estudiante solamente ha realizado el examen presencial y superado, bien la PEC, bien el trabajo académico:

[nota final] = 0,9 * [nota de examen presencial] + 0,1 * [nota PEC o nota de trabajo] Si el estudiante únicamente ha realizado el examen presencial o no ha superado ni la PEC ni el trabajo académico:

[nota final] = [nota de examen presencial]

BIBLIOGRAFÍA BÁSICA

ISBN(13):9780813349107

Título: NONLINEAR DYNAMICS AND CHAOS: WITH APPLICATIONS TO PHYSICS, BIOLOGY,

CHEMISTRY, AND ENGINEERING (Segunda)

Autor/es:Steven H. Strogatz;

Editorial:CRC Press

Este libro cubre perfectamente los contenidos de la asignatura con gran profusión de ejemplos desarrollados y problemas propuestos. En este libro se puede encontrar una presentación cuidadosa de los conceptos matemáticos, así como de sus aplicaciones a la modelización de sistemas dinámicos en otros campos de la ciencia.

UNED 10 CURSO 2022/23

Nota importante: Es posible que algunos de los estudiantes dispongan de la edición anterior. La segunda edición incluye, en opinión del Equipo docente, pocas novedades respecto al material incluido en la primera y ninguna de dichas novedades es realmente relevante, de manera que la asignatura se puede seguir perfectamente tanto por la edición nueva como por la antigua. Por lo tanto, los estudiantes que dispongan de la primera edición no tienen necesidad de hacerse con un ejemplar de la segunda edición.

BIBLIOGRAFÍA COMPLEMENTARIA

Esta asignatura puede también seguirse mediante cualquier libro de Sistemas dinámicos o Dinámica de sistemas nolineales que contemple los diversos apartados del programa que se detallan en el apartado correspondiente. A este respecto, damos una relación de libros que pueden ser de utilidad:

•BERGÉ, P.; POMEAU, Y. y VIDAL, C.: Order within Chaos: Towards a deterministic Approach to Turbulence. Editorial Hermann, París, 1984.

Este es uno de los primeros libros de texto publicados sobre dinámica nolineal y caos determinista y sus autores son investigadores que contribuyeron de forma importante al crecimiento de este campo tanto desde la vertiente teórica como experimental. Aunque está más orientado hacia los sistemas disipativos espacialmente extensos, cubre razonablemente el programa y hace una presentación atractiva de los temas, con un fuerte énfasis en la parte más física de la disciplina. Quizá son escasos los ejemplos desarrollados y no entra en demasiada profundidad matemática.

- •NICOLIS, G.: Introduction to Nonlinear Science. Editorial Cambridge University Press, New York, 1995.
- Excelente texto introductorio, aunque más dirigido hacia aspectos generales de la ciencia nolineal, con énfasis en los sistemas disipativos espacialmente extensos, que hacia los sistemas dinámicos.
- •GUCKENHEIMER, J. y HOLMES, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Editorial Springer-Verlag, New York, 1983.
- Probablemente el texto más completo para iniciarse en la teoría de sistemas dinámicos desde un punto de vista matemático riguroso. Es referencia obligada en el campo a todos los niveles. Muy recomendable para quienes pretendan seguir con el estudio de los sistemas dinámicos en etapas de estudio de mayor nivel.
- •JORDAN, D. W. y SMITH, P.: Nonlinear Ordinary Differential Equations (2ª edición), Editorial Clarendon Press, Oxford, 1995.
- Siendo un texto sobre ecuaciones diferenciales ordinarias, contiene varios apartados sobre métodos matemáticos de interés en el campo de los sistemas dinámicos (construcción de soluciones por métodos de "promediado" o de perturbaciones, etc.) y un capítulo sobre dinámica cualitativa de sistemas nolineales y caos determinista.

UNED 11 CURSO 2022/23

•DRAZIN, P. G.: Nonlinear Systems; Cambridge University Press, New York, 1994. Un excelente texto que cubre bien el programa con un nivel de rigor matemático quizá ligeramente superior al recomendado como bibliografía básica. También contiene un buen número de ejemplos desarrollados y listas de problemas.

RECURSOS DE APOYO Y WEBGRAFÍA

Los estudiantes dispondrán de diversos medios de apoyo al estudio, entre los que se pueden destacar:

- •Curso virtual.- Los alumnos tienen la posibilidad de entrar en cualquier momento en el Curso virtual. Se recomienda encarecidamente la consulta del Curso virtual, pues en él se podrá encontrar información actualizada sobre aspectos relacionados con la organización académica y posibles actividades del curso. Asimismo, en el Curso virtual podrá establecer contacto con sus compañeros, con el Equipo Docente de la Sede Central y con el Profesor Tutor que tenga asignado.
- •Colección de problemas resueltos.- Dentro del Curso virtual se pone a disposición de los estudiantes una extensa colección de problemas resueltos del mismo nivel y estructura que los que se incluirán en los procedimientos de evaluación.
- •Herramientas de simulación numérica y representación gráfica.- La simulación numérica y la visualización de sus resultados constituye una potente herramienta de aprendizaje en esta asignatura. realizar sus propias simulaciones y representaciones del comportamiento dinámico tanto de sistemas nolineales multidimensionales como de aplicaciones iterativas. En el Curso Virtual se sugieren algunas herramientas computacionales apropiadas para que, con poco esfuerzo de programación, el/la estudiante pueda desarrollar sus propias simulaciones.
- •La bibliotecas de los Centros Asociados.- En ellas el estudiante puede consultar la bibliografía básica recomendada y, al menos, una parte de la bibliografía complementaria.

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 12 CURSO 2022/23