GUÍA DE ESTUDIO PÚBLICA

ELECTRÓNICA INDUSTRIAL

CÓDIGO 68903067

18-19

ELECTRÓNICA INDUSTRIAL CÓDIGO 68903067

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN
REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA
ASIGNATURA
EQUIPO DOCENTE
HORARIO DE ATENCIÓN AL ESTUDIANTE
TUTORIZACIÓN EN CENTROS ASOCIADOS
COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE
RESULTADOS DE APRENDIZAJE
CONTENIDOS
METODOLOGÍA
SISTEMA DE EVALUACIÓN
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
RECURSOS DE APOYO Y WEBGRAFÍA

UNED 2 CURSO 2018/19

Nombre de la asignatura ELECTRÓNICA INDUSTRIAL

 Código
 68903067

 Curso académico
 2018/2019

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LÁ INGENIERÍA

Título en que se imparte GRADO EN INGENIERÍA EN ELECTRÓNICA INDUSTRIAL Y

AUTOMÁTICA

CURSO - PERIODO GRADUADO EN INGENIERÍA ELÉCTRICA

- TERCER CURSO - SEMESTRE 2

CURSO - PERIODO ESPECÍFICA DEL PLAN 2001 UNED

- OPTATIVAS CURSO - SEMESTRE 2

Título en que se imparte GRADO EN INGENIERÍA ELÉCTRICA CURSO - PERIODO GRADUADO EN INGENIERÍA ELÉCTRICA

- TERCER CURSO - SEMESTRE 2

CURSO - PERIODO ESPECÍFICA DEL PLAN 2001 UNED

- OPTATIVAS CURSO - SEMESTRE 2

Tipo OBLIGATORIAS

 Nº ETCS
 5

 Horas
 125.0

Idiomas en que se imparte CASTELLANO

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La asignatura ELECTRÓNICA INDUSTRIAL introduce al alumno en el análisis y diseño de los circuitos y sistemas electrónicos de potencia comenzando por una aproximación conceptual e histórica de esta disciplina, siguiendo con una revisión de los dispositivos empleados y finalizando con el estudio de los equipos básicos: Interruptores estáticos, reguladores, rectificadores e inversores. Brevemente descrita puede considerarse que constituye una introducción compendiada de lo que tradicionalmente se ha denominado como *electrónica de potencia*.

Esta asignatura de carácter obligatorio, curso 3ª, segundo semestre, común al Grado en Electrónica Industrial y Automática y al Grado en Ingeniería Eléctrica, se basa en los conocimientos adquiridos por el alumno en Teoría de Circuitos, que lo preparan para abordar los circuitos electrónicos con conocimiento adecuado de los circuito eléctricos en los que aquellos se basan. Esta asignatura es la base sobre la que se fundamenta la asignatura Sistemas Electrónicos de Potencia de carácter más avanzado en el caso del Grado en Electrónica Industrial y Automática .

Electrónica Industrial es una asignatura de 5 créditos impartiéndose en el segundo cuatrimestre, en la que se abordan fundamentalmente los dispositivos aplicados a la electrónica de potencia, los circuitos electrónicos de potencia básicos y algunas aplicaciones no complejas, es decir: *Dispositivos electrónicos de potencia, Rectificadores, Reguladores, Interruptores estáticos, e Inversores.*

UNED 3 CURSO 2018/19

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

Como conocimientos previos se debe partir del dominio de la Teoría de Circuitos y de los Sistemas Electrónicos, además de los conocimientos básicos de la Automatización Industrial I y II (control y regulación automática, bucles de realimentación). Son interesantes, aunque no imprescindibles conocimientos en Informática y en el uso de aplicaciones avanzadas en ordenador personal, como ayuda a la solución matemática de circuitos y a su simulación.

EQUIPO DOCENTE

Nombre y Apellidos SANTIAGO MONTESO FERNANDEZ (Coordinador de asignatura)

Correo Electrónico smonteso@ieec.uned.es

Teléfono 91398-6481

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LA INGENIERÍA

Nombre y Apellidos FRANCISCO MUR PEREZ

Correo Electrónico fmur@ieec.uned.es
Teléfono 91398-7780

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

Departamento INGENIERÍA ELÉCTRICA, ELECTRÓNICA, CONTROL, TELEMÁTICA Y

QUÍMICA APLICADA A LA INGENIERÍA

HORARIO DE ATENCIÓN AL ESTUDIANTE

Se recomienda al alumno con acceso a Internet que visite las páginas sugeridas en la bibliografía de cada capítulo de la obra mencionada en al Bibliografía Básica

La guardia de la asignatura se realizará los martes por la tarde de 16:00 a 20:00 horas, en los locales del Departamento de Ingeniería Eléctrica, Electrónica y de Control, en la Escuela Técnica Superior de Ingenieros Industriales de la UNED.

Francisco Mur Pérez teléfono 91-398-77-80,

Santiago Monteso Fernández, teléfono 91-398-64-81.

Se recomienda al alumno la utilización del curso virtual creado al efecto como soporte de la asignatura (al que puede acceder por medio de CiberUNED en las páginas Web de la UNED), así como la asistencia periódica a las tutorías en su Centro Asociado.

Igualmente, pueden mandar consultas por fax al teléfono 91-398-60-28 indicando el nombre del profesor y asignatura, así como el propio nombre del alumno y número de teléfono o fax.

TUTORES

Se recomienda a los Tutores de la asignatura que se pongan en contacto con el Profesor a principio de curso para verificar si existe alguna anomalía respecto de las directrices dadas en esta guía de curso y, si ello fuera necesario, para pedir recomendaciones metodológicas en los aspectos didácticos de la misma.

UNED 4 CURSO 2018/19

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

La información ofrecida respecto a las tutorías de una asignatura es orientativa. Las asignaturas con tutorías y los horarios del curso actual estarán disponibles en las fechas de inicio del curso académico. Para más información contacte con su centro asociado.

Consultar horarios de tutorización de la asignatura 68903067

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

COMPETENCIAS DEL GRADO (ORDEN CIN 351-2009)

COMPETENCIAS GENERALES:

- •CG3. -Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- •CG4. -Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.
- •CG10. -Capacidad de trabajar en un entorno multilingüe y multidisciplinar.

 COMPETENCIAS ESPECÍFICAS DE LA RAMA DE ELECTRÓNICA INDUSTRIAL Y

 AUTOMÁTICA:
- •CTE El 1. -Conocimiento aplicado de electrotecnia.
- •CTE El 4. -Conocimiento aplicado de electrónica de potencia.

COMPETENCIAS ESPECIFICAS COMUNES DE LA RAMA INDUSTRIAL

•CEC 5. -Conocimientos de los fundamentos de la electrónica.

OTRAS COMPETENCIAS:

- •Comprensión de textos técnicos en lengua inglesa.
- •Comunicación y expresión matemática, científica y tecnológica.
- Manejo de las tecnologías de la información y comunicación (TICs).
- •Capacidad para gestionar información.

(OBSERVACIONES: Memoria del Grado en proceso de revisión)

UNED 5 CURSO 2018/19

RESULTADOS DE APRENDIZAJE

La asignatura consta de las siguientes partes:

· Parte 1a: Concepto y dispositivos.

· Parte 2a: Interruptores y reguladores de CC y de CA.

• Parte 3a: Convertidores CA-CC (rectificadores) y CC-CA (inversores).

La primera parte (Concepto y dispositivos) incluye una introducción conceptual (abarcando los métodos de análisis y las herramientas matemáticas empleadas) e histórica a la Electrónica de Potencia, así como el estudio de los distintos dispositivos o componentes empleados, como son el diodo de potencia en sus distintas modalidades, el transistor de unión bipolar de potencia, el transistor de efecto de campo (FET) de potencia, el transistor bipolar de puerta aislada (IGBT) de potencia y el tiristor unidireccional. Se incluyen algunos conceptos básicos de refrigeración de semiconductores de potencia.

En la segunda parte (Interruptores y reguladores de CC y de CA) se aborda el análisis de funcionamiento de interruptores estáticos de corriente continua y de corriente alterna, y de los reguladores de corriente continua y de corriente alterna. Se hace hincapié en la valoración comparada de las distintas modalidades topológicas para resolver una misma función, de modo que el alumno, además de conocer las soluciones circuitales disponibles para una función electrónica, adquiera criterio de valoración técnica y económica de las mismas.

En la tercera parte (Convertidores CA-CC (rectificadores) y CC-CA (inversores)) se aborda el análisis de funcionamiento de los rectificadores, tanto no controlados como controlados, y de los inversores en sus distintas modalidades. De nuevo se hace hincapié en la comparación de las distintas modalidades topológicas para resolver una determinada función (como, por ejemplo, las distintas configuraciones de rectificadores trifásicos con diodos, o de inversores monofásicos).

CONTENIDOS

Parte 1^a: Conceptos y dispositivos

Parte 2a: Interruptores y reguladores de CC y de CA

Parte 3^a: Convertidores CA-CC (rectificadores) y CC-CA (inversores)

UNED 6 CURSO 2018/19

METODOLOGÍA

La metodología de estudio utiliza la tecnología actual para la formación a distancia en aulas virtuales, con la participación del Equipo Docente, los Profesores Tutores y todos los alumnos matriculados. En este entorno se trabajaran los contenidos teórico-prácticos cuya herramienta fundamental de comunicación será el curso virtual, utilizando la bibliografía básica y el material complementario.

El trabajo autónomo con las actividades de ejercicios y pruebas de autoevaluación disponibles, bajo la supervisión del tutor, con las herramientas y directrices preparadas por el equipo docente completará el tiempo de estudio y preparación de la asignatura.

Por último esta asignatura tiene programadas unas prácticas cuya realización y superación son requisitos imprescindibles para aprobar la asignatura.

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen
Preguntas test
Preguntas desarrollo
Duración del examen
Material permitido en el examen

Calculadora no programable

Criterios de evaluación

Examen mixto

10

1

120 (minutos)

UNED 7 CURSO 2018/19

Prueba Personal Presencial

Existe una única Prueba Personal Presencial, en junio (que incluye la totalidad de los contenidos teóricos). El alumno puede elegir entre presentarse a la primera o segunda vuelta de esta Prueba, para así repartir mejor los exámenes de las asignaturas de las que esté matriculado durante el período de exámenes. En septiembre se realiza nuevamente esta Prueba Personal para los alumnos que no hubieran aprobado en junio. En septiembre los alumnos se han de presentar a la única vuelta existente, estando prevista la posibilidad de realizar el examen de reserva de la asignatura, en el caso de que pueda hacerlo según el Reglamento de Pruebas Presenciales de la UNED.

Como orientación (puede haber variaciones) la Prueba Personal estará estructurada como sigue:

Una primera parte (como orientación 40% de la nota del examen) con cuestiones teórico-conceptuales breves o de tipo test. En esta parte hay que obtener una puntuación mínima, que se detallará en el examen, para que se corrija la tercera parte teórico-descriptiva. Las respuestas erróneas descuentan media respuesta correcta para el cómputo total.

Una segunda parte (como orientación 40% de la nota del examen) consistente en la resolución de un problema del que se realizarán varias preguntas breves o de tipo test. En esta parte hay que obtener una puntuación mínima, que se detallará en el examen, para que se corrija la tercera parte teóricodescriptiva. Las respuestas erróneas descuentan media respuesta correcta para el cómputo total.

Una tercera parte teórico-descriptiva (como orientación 20% de la nota del examen) con uno o dos temas (o preguntas teóricas) a desarrollar.

Por último, se podría incluir alguna pregunta relacionada con las prácticas de la asignatura, bien dentro de las partes anteriores o como una parte adicional.

No obstante, consulte en el curso virtual la guía ampliada donde se detallará esta información y los pesos de cada parte, así como el peso del examen de teoria y de la nota de prácticas.

Prácticas de la asignatura

Son obligatorias. Consisten en el estudio teorico completo y simulación mediante el programa PSIM de diversos problemas como los tratados en teoria. Su realización y superación son imprescindibles para aprobar la asignatura.

Informes del Profesor Tutor

Se tendrá en cuenta en la nota final el informe (si lo hubiere) realizado por el profesor Tutor de la Asignatura en el Centro Asociado, quien a su vez evaluará en su elaboración la asistencia y participación en las tutorías (presenciales y telemáticas), el grado de interés en la asignatura y, sobre todo, la asimilación de los contenidos por parte del alumno.

Dicha nota del tutor influye en la nota final con un peso del 10 % y se tiene en cuenta una vez aprobada la Prueba Personal y sólo en el caso de que sea superior a la obtenida en la Prueba Personal.

Nota final de la asignatura

CURSO 2018/19 **UNED** 8

Por tanto, para el cálculo de la nota final se tendrá en cuenta la nota de la Prueba Personal, la nota de las prácticas de la asignatura y la nota del profesor Tutor. Es necesario aprobar el examen de teoria y las prácticas por separado para superar la asignatura.

% del examen sobre la nota final

Nota del examen para aprobar sin PEC

Nota máxima que aporta el examen a la

calificación final sin PEC

Nota mínima en el examen para sumar la 5

PEC

Comentarios y observaciones

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC?

Descripción

Consisten en la realización de problemas y cuestiones similares a los del examen. En el caso de los problemas, estos deben de ser desarrollados en detalle por el alumno para su evaluación y posibles comentarios.

Criterios de evaluación

Ponderación de la PEC en la nota final

Fecha aproximada de entrega

Comentarios y observaciones

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s? Descripción

Prácticas de la asignatura

Son obligatorias. Consisten en el estudio teorico completo y simulación mediante el programa PSIM de diversos problemas como los tratados en teoria. Su realización y superación son imprescindibles para aprobar la asignatura. Generalmente las prácticas se realizan justo al terminar los exámenes (junio o septiembre). En los foros se anunciará convenientemente su publicación.

Criterios de evaluación

Ponderación en la nota final

0

Fecha aproximada de entrega

Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

Cada PEC cuenta un 5% sobre la nota de teoría y sólo se tienen en cuenta si suben nota, siempre y cuando la nota del examen de teoría sea mayor de 5. Las prácticas son un 20% de la nota final y la teoría un 80%. Es necesario obtener un mínimo de 4 en las prácticas y un mínimo de 5 en el examen de teoría.

UNED 9 CURSO 2018/19

BIBLIOGRAFÍA BÁSICA

ISBN(13):9788420546520

Título:PROBLEMAS DE ELECTRÓNICA DE POTENCIA

Autor/es: Andres Barrado, Antonio Lázaro;

Editorial:: PRENTICE HALL

ISBN(13):9788497323970

Título:ELECTRÓNICA DE POTENCIA. COMPONENTES, TOPOLOGÍAS Y EQUIPOS (1ª)

Autor/es:Gualda Gil, Juan Andrés; Martínez García, Salvador;

Editorial:THOMSON PARANINFO,S.A.

BIBLIOGRAFÍA COMPLEMENTARIA

ISBN(13):9788420531793

Título:ELECTRÓNICA DE POTENCIA (1ª)

Autor/es:Hart, Daniel;

Editorial:PEARSON

MOHAM, N., UNDELAND, T.M., ROBBINS, W.P.: Power electronics. Ed. John Wiley &Sons, 1989.

RASHID, M. H.: Electrónica de potencia –Circuitos, dispositivos y aplicaciones. Ed. Prentice-Hall

Hispanoamericana, 1995.

ERICKSON, R. W, MAKSIMOVIC, D: Fundamentals of Power Electronics. Ed. Springer, 2001.

PELLY, B.R.: Thyristor phase-controlled converters and cycloconverters –Operation, control and performance. Ed. Wiley Interscience, 1971.

BOSE, B.K.: Power electronics and AC drives. Ed. Prentice-Hall, 1986.

PRESSMAN, A.I.: Switching power supply design. Ed. McGraw-Hill, 1998.

Catálogos de fabricantes: International rectifier, EUPEC, ABB, ST Microelectronics, Fuji

Electric, Vishay-

Siliconix, etc.

RECURSOS DE APOYO Y WEBGRAFÍA

Como recursos adicionales para el estudio de la asignatura, en el curso virtual podrá encontrar los siguientes materiales:

- •Esta guía de estudio y la guía didáctica de la asignatura.
- •Pruebas de evaluación a distancia.

UNED 10 CURSO 2018/19

- •Enunciados y soluciones de ejercicios teórico-prácticos que el alumno puede usar como ejercicios de autoevaluación, incluyendo exámenes resueltos de anteriores convocatorias.
- •Software para la simulación de circuitos eletrónicos de potencia.

El alumno que tenga acceso a Internet o Redes IP, podrá consultar la información existente en los servidores del Departamento o de la UNED:

http://www.ieec.uned.es/

http://www.uned.es/

Se recomienda al alumno con acceso a Internet que visite las páginas sugeridas en la bibliografía de cada capítulo de la obra mencionada en al Bibliografía Básica

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 11 CURSO 2018/19