GRADO EN INGENIERÍA INFORMÁTICA CUARTO CURSO

GUÍA DE ESTUDIO PÚBLICA

VISIÓN ARTIFICIAL

CÓDIGO 71014046

20-21

VISIÓN ARTIFICIAL CÓDIGO 71014046

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN
REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA
ASIGNATURA
EQUIPO DOCENTE
HORARIO DE ATENCIÓN AL ESTUDIANTE
TUTORIZACIÓN EN CENTROS ASOCIADOS
COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE
RESULTADOS DE APRENDIZAJE
CONTENIDOS
METODOLOGÍA
SISTEMA DE EVALUACIÓN
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
RECURSOS DE APOYO Y WEBGRAFÍA

UNED 2 CURSO 2020/21

Nombre de la asignatura VISIÓN ARTIFICIAL

 Código
 71014046

 Curso académico
 2020/2021

Departamento INTELIGENCIA ARTIFICIAL

Título en que se imparte GRADO EN INGENIERÍA INFORMÁTICA

CURSO - PERIODO - CUARTO CURSO - SEMESTRE 1

Título en que se imparte GRADO EN INGENIERÍA EN TECNOLOGÍAS DE LA INFORMACIÓN

CURSO - PERIODO - CUARTO CURSO - SEMESTRE 1

Tipo OPTATIVAS

Nº ETCS 6 Horas 150.0

Idiomas en que se imparte CASTELLANO

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La asignatura de "Visión Artificial" se encuadra, dentro del plan de estudios del Grado en Ingeniería Informática, en el módulo de "Percepción" de la materia de "Sistemas Autónomos". Consta de 6 créditos ETCS y se estudia en el primer semestre de cuarto curso. Esta asignatura ofrece al alumno una panorámica del problema de la percepción visual a través del estudio de las distintas etapas y módulos de un sistema de visión artificial, desde la captación de la imagen hasta la interpretación de la misma. A través de las distintas etapas se abstrae la información proporcionada por la imagen para asociarla con los objetos de interés presentes en la misma. En el proceso, se utilizan niveles de descripción de la imagen con grado creciente de abstracción: píxeles, blobs, objetos y actividades (en esta asignatura sólo se llegará hasta el nivel de objetos).

Por un lado, la imagen está compuesta por píxeles, los cuales pueden ser manipulados mediante distintas operaciones de procesado de bajo nivel y agrupados en blobs mediante el proceso de segmentación. Los blobs pueden ser descritos por sus características espaciales, temporales y visuales y pueden ser simples o compuestos. Por otro, los objetos del mundo real también pueden ser descritos mediante sus características espaciales, temporales y visuales, por lo que pueden ser localizados en la imagen si somos capaces de establecer la correspondencia con los blobs localizados previamente. El modelado de los objetos y las técnicas de reconocimiento de patrones serán las herramientas utilizadas para ello.

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA

Para afrontar con éxito el estudio de esta asignatura deberán manejarse con soltura los conocimientos de programación, cálculo vectorial y álgebra vistos en otras asignaturas previas. También son necesarios conocimientos de inglés (lectura), pues el material didáctico básico se proporciona en este idioma.

UNED 3 CURSO 2020/21

EQUIPO DOCENTE

Nombre y Apellidos MARIANO RINCON ZAMORANO (Coordinador de asignatura)

Correo Electrónico mrincon@dia.uned.es

Teléfono 91398-7167

Facultad ESCUELA TÉCN.SUP INGENIERÍA INFORMÁTICA

Departamento INTELIGENCIA ARTIFICIAL

Nombre y Apellidos MARGARITA BACHILLER MAYORAL

Correo Electrónico marga@dia.uned.es

Teléfono 91398-7166

Facultad ESCUELA TÉCN.SUP INGENIERÍA INFORMÁTICA

Departamento INTELIGENCIA ARTIFICIAL

HORARIO DE ATENCIÓN AL ESTUDIANTE

El curso virtual en la plataforma ALF es el medio preferido para resolver dudas, tanto de la parte teórica como de la práctica. No obstante, siempre podrá consultar sus dudas particulares a los profesores del equipo docente.

Los horarios de atención:

- Dr. D. Mariano Rincón Zamorano.

Martes 16:00 a 20:00. Despacho 3.16. Tel.: 913987167. mrincon@dia.uned.es

- Dra. Dña. Margarita Bachiller Mayoral.

Martes de 14:00 a 18:00. Despacho 3.17. Tel.: 913987166. marga@dia.uned.es

Dirección de contacto:

ETSI Informática - UNED Dpto. Inteligencia Artificial c/Juan del Rosal, 16 28040 Madrid

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

En el curso 2020/21 esta asignatura no ha sido tutorizada

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

El estudio de esta asignatura contribuye en mayor o menor medida a la adquisición de las competencias que el ingeniero debe poseer:

Competencias generales

(G.1) Competencias de gestión y planificación: Iniciativa y motivación. Planificación y

UNED 4 CURSO 2020/21

- organización (establecimiento de objetivos y prioridades, secuenciación y organización del tiempo de realización, etc.). Manejo adecuado del tiempo.
- **(G.2)** Competencias cognitivas superiores: selección y manejo adecuado de conocimientos, recursos y estrategias cognitivas de nivel superior apropiados para el afrontamiento y resolución de diversos tipos de tareas/problemas con distinto nivel de complejidad y novedad: Análisis y Síntesis. Aplicación de los conocimientos a la práctica Resolución de problemas en entornos nuevos o poco conocidos. Pensamiento creativo. Razonamiento crítico. Toma de decisiones.
- **(G.3)** Competencias de gestión de la calidad y la innovación: Seguimiento, monitorización y evaluación del trabajo propio o de otros. Aplicación de medidas de mejora. Innovación.
- (G.4) Competencias de expresión y comunicación (a través de distintos medios y con distinto tipo de interlocutores): Comunicación y expresión escrita. Comunicación y expresión oral. Comunicación y expresión en otras lenguas (con especial énfasis en el inglés). Comunicación y expresión matemática, científica y tecnológica (cuando sea requerido y estableciendo los niveles oportunos)
- (G.5) Competencias en el uso de las herramientas y recursos de la Sociedad del Conocimiento: Manejo de las TIC. Competencia en la búsqueda de información relevante. Competencia en la gestión y organización de la información. Competencia en la recolección de datos, el manejo de bases de datos y su presentación.

Competencias específicas

- **(BC.15)** Conocimiento y aplicación de los principios fundamentales y técnicas básicas de los sistemas inteligentes y su aplicación práctica.
- (BTEc.1) Capacidad para tener un conocimiento profundo de los principios fundamentales de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar, y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la informática.
- (BTEc.4) Capacidad para conocer los fundamentos, paradigmas y técnicas propias de los sistemas inteligentes y analizar, diseñar y construir sistemas, servicios y aplicaciones informáticas que utilicen dichas técnicas en cualquier ámbito de aplicación.

RESULTADOS DE APRENDIZAJE

- •RA1: Estudiar los procesos de formación y adquisición de la imagen.
- •RA2: Capacitar al alumno para realizar un proceso de calibrado de cámaras.
- •RA3:Introducir al alumno en las técnicas de procesado digital de imágenes para el preprocesado de imágenes.
- •RA4: Presentar los conceptos de contornos y regiones como base para la caracterización visual de objetos.
- •RA5: Capaciar al alumno para seleccionar los métodos de segmentación más adecuados en función del problema.
- •RA6:Introducir al alumno en las técnicas de visión por computador utilizadas para el reconocimiento de objetos.

UNED 5 CURSO 2020/21

•RA7:Introducir al alumno en las técnicas de visión por computador utilizadas para el seguimiento de objetos.

CONTENIDOS

CAPÍTULO 1. INTRODUCCIÓN A LA VISIÓN ARTIFICIAL

- 1. Referencia histórica.
- 2. Terminología.
- 3. Etapas del procesado.
- 4. Componentes de un sistema de visión.

CAPÍTULO 2. ADQUISICIÓN DE IMÁGENES Y CALIBRACIÓN

- 1. Proceso de formación de la imagen.
- 2. Geometría de la formación de la imagen
- 3. Calibración de la cámara

CAPÍTULO 3. PROCESADO DE BAJO NIVEL

- 1. Filtrado de imágenes digitales: Eliminación del ruido y Realce de características.
- 2. Transformaciones basadas en el histograma.
- 3. Transformaciones espaciales
- 4. Extracción de características.
- 5. Flujo óptico y campo de flujo óptico

CAPÍTULO 4. SEGMENTACIÓN DE IMÁGENES

- 1. Segmentación sin conocimiento del dominio: basada en detección de fronteras, basada en la umbralización, basada en la agrupación de píxeles, basada en el movimiento
- 2. Segmentación con conocimiento del dominio: Transformada de Hough, Contornos activos, RANSAC

CAPÍTULO 5. SEGUIMIENTO

- 1. Estimadores de movimiento
- 2. Seguimiento de objetos mediante contornos activos

UNED 6 CURSO 2020/21

CAPÍTULO 6. EXTRACCIÓN DE CARACTERÍSTICAS Y MODELADO DE OBJETOS

- 1. Representación de estructuras geométricas
- 2. Representación en un espacio de características discriminantes
- 3. Descriptores de puntos característicos

CAPÍTULO 7. RECONOCIMIENTO DE PATRONES

- 1. Métodos estadísticos
- 2. Métodos estructurales y sintácticos
- 3. Métodos basados en la apariencia

CAPÍTULO 8. APLICACIONES DE VISIÓN ARTIFICIAL

* El contenido de este capítulo se encuentra disperso a lo largo de todo el curso, donde utilizaremos aplicaciones de visión artificial en distintos campos (procosado de texto, vigilancia, medicina, etc.) para ejemplificar distintos conceptos y procedimientos.

METODOLOGÍA

La metodología utilizada es la propia de una educación a distancia apoyada por el uso de las TIC. El alumno dispone de una guía de estudio que explica el plan de trabajo que debe seguir durante su aprendizaje. Los medios que utilizará el alumno son, fundamentalmente, la bibliografía básica y el curso virtual en la plataforma alF. La bibliografía básica permite el estudio autónomo. Se utilizarán multitud de ejercicios prácticos para mostrar al alumno el modo de aplicar la teoría estudiada. El curso virtual permite mantener una comunicación fluida entre alumnos y el equipo docente de manera que el alumno siempre encontrará el apoyo necesario durante su proceso de aprendizaje.

Las actividades formativas que contemplamos en esta asignatura son:

- Estudio de contenidos teóricos. Esta actividad es trabajo autónomo y consiste en el estudio de la materia teórica utilizando el material recomendado. El tiempo asignado a esta tarea será del 100% de los créditos correspondientes a la parte teórica.
- •Realización de problemas prácticos. Esta actividad es, en principio, trabajo autónomo, y consiste en la realización de los problemas prácticos propuestos para ayudar al alumno a entender los conocimientos teóricos. Dichos problemas se encuentran, por un lado, en la bibliografía básica recomendada para el estudio de la asignatura, y por otro, se proporcionarán por el equipo docente en el curso virtual. El tiempo asignado a esta parte es del 70% de los créditos correspondientes a la parte práctica. Parte de estos problemas pueden realizarse bajo la supervisión del tutor correspondiente.
- ·Realización de actividades teórico-prácticas. Esta actividad es trabajo autónomo y consiste en la realización de un conjunto de problemas, seleccionados por el equipo docente, donde el alumno debe demostrar los conocimientos adquiridos. La realización de estas actividades

UNED 7 CURSO 2020/21

pretende marcar al alumno un ritmo de estudio a lo largo del cuatrimestre dado que existen fechas concretas para su entrega, además de ser una manera de autoevaluarse. El tiempo asignado a esta parte es del 30% de los créditos correspondientes a la parte práctica.

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Examen de desarrollo

Preguntas desarrollo

Duración del examen 120 (minutos)

Material permitido en el examen

Ninguno.

Criterios de evaluación

Se tratará de cuestiones teóricas y problemas prácticos tanto de análisis como de síntesis. Para su desarrollo no se permitirá ningún material. No obstante, nunca se forzará al alumno a un ejercicio memorístico fuera de lo normal. Cuando la contestación a una pregunta o el desarrollo de un problema exija ciertas fórmulas complejas, éstas se incluirán en el enunciado del examen.

% del examen sobre la nota final 60

Nota del examen para aprobar sin PEC

Nota máxima que aporta el examen a la 6

calificación final sin PEC

Nota mínima en el examen para sumar la

PEC

Comentarios y observaciones

La nota final de la asignatura se obtiene de la siguiente manera:

Si se han obtenido al menos 4 puntos sobre 10 en la prueba presencial, la nota final será:

Nota Final= 0.6*nota prueba presencial +0.4* nota actividades PEDs.

Si se han obtenido menos de 4 puntos sobre 10 en la prueba presencial, la nota final será:

Nota Final= 0.6*nota prueba presencial

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC? Si

Descripción

UNED 8 CURSO 2020/21

Las actividades teóricas y prácticas de esta asignatura se centran en resolver uno o varios problemas relacionados con la visión artificial donde el alumno demostrará que sabe seleccionar la técnica más adecuada y desarrollar su implementación.

Se realizarán dos PEDs, que estarán disponibles en el curso virtual en las fechas establecicas. La PED1 (temas 1-3) se realizará aproximadamente a mediados de Noviembre y la PED2 (temas 4 a 8) a principios de Enero. Los alumnos serán informados a través del curso virtual tanto de la publicación de dichas PEDs como de la fecha de entrega (el alumno dispondrá de aproximadamente dos semanas para su resolución).

Su realización supone el 40% de la nota final (si no se realizan, la nota máxima que es posible obtener en la asignatura es de 6).

No es necesaria la presencia del alumno en el centro asociado para su realización.

Criterios de evaluación

VISIÓN ARTIFICIAL

Se valorará tanto la resolución de los problemas planteados (el código implementado) como la calidad de la memoria donde se documenta y justifica la solución realizada.

Ponderación de la PEC en la nota final 40%

Fecha aproximada de entrega PEC1/Noviembre y PEC2/Enero

Comentarios y observaciones

No basta con entregar el código que soluciona los problemas planteados, sino que es necesario también entregar una memoria donde se justifiquen las decisiones tomadas y

se comenten los resultados obtenidos.

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s? No Descripción

Criterios de evaluación

Ponderación en la nota final 0
Fecha aproximada de entrega

Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

La nota final de la asignatura se obtiene de la siguiente manera:

Si se han obtenido al menos 4 puntos sobre 10 en la prueba presencial, la nota final será:

Nota Final= 0.6*nota prueba presencial +0.4* nota actividades PEDs.

Si se han obtenido menos de 4 puntos sobre 10 en la prueba presencial, la nota final será:

Nota Final= 0.6*nota prueba presencial

UNED 9 CURSO 2020/21

BIBLIOGRAFÍA BÁSICA

Bibliografía Básica:

- BALLARD AND BROWN. COMPUTER VISION. PRENTICEHALL, INC. 1982, 0-13-165316-

- NEVATIA. MACHINE PERCEPTION. Prentice-Hall, 1982, ISBN 0-13-541904-2

Los textos utilizados como material docente básico de esta asignatura son de libre distribución de acuerdo con el proyecto CVONLINE, el cual se consulta a través de la siguiente dirección:

http://homepages.inf.ed.ac.uk/rbf/CVonline/SUPPORT/overview.htm.

Los libros están disponibles online en la siguiente página:

http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm

El Equipo Docente indicará en el curso virtual el material más recomendable para el estudio de cada uno de los temas que conforman el temario.

Consultar, más abajo, la sección de Recursos Adicionales.

BIBLIOGRAFÍA COMPLEMENTARIA

Ver la sección de "Recursos Adicionales".

RECURSOS DE APOYO Y WEBGRAFÍA

La asignatura tiene un carácter eminentemente práctico, por lo que se utilizará el lenguaje de programación **PYTHON** para la implentación de algoritmos relacionados con los distintos temas de la asignatura y su uso en aplicaciones. Se hará uso extensivo de las librerías tales como openCV, skimage, matplotlib, etc. de las que podemos encontrar abundante documentación en internet.

Tanto para el seguimiento de la asignatura como para aquellos alumnos que quieran profundizar en algún campo concreto, disponemos de dos fuentes de recursos de apoyo muy importantes:

- Sección de "Libros electrónicos" de la biblioteca de la UNED, desde donde se tiene acceso a gran cantidad de recursos online. En concreto, queremos destacar los "safari books", que dispone de una herramienta de búsqueda muy potente para acceder a contenidos online. A fecha de edición de esta guía la dirección de acceso es la siguiente: http://portal.uned.es/portal/page?_pageid=93,26012339&_dad=portal&_schema=PORTAL
- **Proyecto CVONLINE**: es una fuente básica donde hay información complementaria correspondiente a cada uno de los temas tratados en este curso y aplicaciones de los mismos. Os recomendamos la siguiente referencia *MACHINE VISION. Ramesh Jain, Rangachar Kasturi, Brian G. Schunck Published by McGraw-Hill, Inc., ISBN 0-07-032018-7, 1995 (http://www.cse.usf.edu/~r1k/MachineVisionBook/MachineVi sion.pdf).*

UNED 10 CURSO 2020/21

VISIÓN ARTIFICIAL CÓDIGO 71014046

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

UNED 11 CURSO 2020/21