ÍNDICE

Prologo	1 /
UNIDAD DIDÁCTICA I	
Tema 1. Introducción a la Química Orgánica (Dra. Amelia García Fraile) 1.1. Introducción	21 23 24 25 32 38
1.6. Clasificación de los compuestos orgánicos. Grupos funcionales	41
Resumen de conceptos importantes	43
Ejercicios de autocomprobación	45
Soluciones a los ejercicios de autocomprobación	48
Tema 2. Alcanos (Dra. Amelia García Fraile)	51
2.1. Definición y clasificación de los alcanos	53
2.2. Nomenclatura de los alcanos	53
2.3. Propiedades físicas de los alcanos	58
2.4. Análisis conformacional de los alcanos	59
2.5. Reactividad general de los alcanos	63
2.6. Métodos de obtención de alcanos	68
Resumen de conceptos importantes	71
Ejercicios de autocomprobación	72
Soluciones a los ejercicios de autocomprobación	75

Tema 3. Cicloalcanos (Dra. Concepción López García) 3.1. Definición, nomenclatura y propiedades físicas de los cicloalcanos. 3.2. Estructura y tensión del anillo en cicloalcanos 3.3. Ciclohexano: conformaciones 3.4. Ciclohexanos monosustituidos 3.5. Análisis conformacional de ciclohexanos disustituidos 3.6. Reactividad y métodos de obtención de los cicloalcanos 3.7. Alcanos policíclicos	81 83 86 91 93 94 96 99
Resumen de conceptos importantes	103
Ejercicios de autocomprobación	104
Soluciones a los ejercicios de autocomprobación	106
Tema 4. Estereoisomería (Dra. Concepción López García)	111 113 114 116 121 125
Resumen de conceptos importantes	126
Ejercicios de autocomprobación	127
Soluciones a los ejercicios de autocomprobación	129
UNIDAD DIDÁCTICA II	
Tema 5. Halogenuros de alquilo: sustitución nucleófila alifática (Dra. M.ª Dolores Santa María Gutiérrez)	141 143 144 145 147 149 154
Resumen de conceptos importantes	162
Ejercicios de autocomprobación	163
Soluciones a los ejercicios de autocomprobación	166

Tema 6. Halogenuros de alquilo: reacciones de eliminación	1.7.5
(Dra. M.ª Dolores Santa María Gutiérrez)	175
6.1. Reacciones de eliminación en los halogenuros de alquilo	177
6.2. Reacción E2: orientación y reactividad	178
6.3. Reacción E1: orientación y reactividad	181
6.4. Competencia E2 / E1	183
S _N 1, S _N 2, E1, E2	183 187
Resumen de conceptos importantes	189
Ejercicios de autocomprobación	191
Soluciones a los ejercicios de autocomprobación	194
Tema 7. Alcoholes (Dra. M.ª Dolores Santa María Gutiérrez)	201
7.1. Nomenclatura de los alcoholes	203
7.2. Estructura y propiedades físicas de los alcoholes	205
7.3. Acidez y basicidad de los alcoholes	206
7.4. Reacciones de los alcoholes	208
7.5. Métodos de obtención de alcoholes	219
7.6. Compuestos organometálicos de litio y magnesio	222
7.7. Reactivos organometálicos de litio y magnesio en la síntesis de alcoholes.	224
Resumen de conceptos importantes	225
Ejercicios de autocomprobación	227
Soluciones a los ejercicios de autocomprobación	230
Tema 8. Éteres y epóxidos. Compuestos de azufre	
(Dra. M.ª Dolores Santa María Gutiérrez)	237
8.1. Nomenclatura de los éteres	239
8.2. Estructura y propiedades físicas de los éteres	240
8.3. Reactividad general de los éteres	241
8.4. Reacciones de apertura del anillo de los epóxidos	242
8.5. Métodos de obtención de éteres. Síntesis de Williamson	247
8.6. Análogos con azufre de alcoholes y éteres: tioles y sulfuros	252
Resumen de conceptos importantes	256
Ejercicios de autocomprobación	258
Soluciones a los ejercicios de autocomprobación	261

UNIDAD DIDÁCTICA III

Tema 9. Determinación estructural por métodos espectroscópicos	o - 1
(Dra. M. ^a del Pilar Cabildo Miranda)	271
9.1. Espectroscopía	273
9.2. Radiación electromagnética	273
9.3. Espectroscopía de absorción	274
9.4. Espectroscopía visible (V) y ultravioleta (UV)	276
9.5. Espectroscopía infrarroja (IR)	280
9.6. Espectroscopía de resonancia magnética nuclear (RMN)	282
9.7. Espectrometría de masas (EM)	290
Resumen de conceptos importantes	293
Ejercicios de autocomprobación	294
Soluciones a los ejercicios de autocomprobación	295
Tema 10. Alquenos (Dra. M. a del Pilar Cabildo Miranda)	297
10.1. Estructura del doble enlace	299
10.2. Nomenclatura de los alquenos e isomería cis-trans	299
10.3. Propiedades físicas de los alquenos	302
10.4. Reacciones de adición al doble enlace	302
10.5. Reducción del doble enlace. Hidrogenación catalítica	311
10.6. Oxidación del doble enlace	312
10.7. Polimerización	315
10.8. Métodos de obtención de alquenos	318
Resumen de conceptos importantes	323
Ejercicios de autocomprobación	324
Soluciones a los ejercicios de autocomprobación	327
Tema 11. Dienos (Dra. M.ª Dolores Santa María Gutiérrez)	333
11.1. Nomenclatura y clasificación de los dienos	335
11.2. Estabilidad y estructura de los dienos conjugados	336
11.3. Adición de electrófilos a dienos conjugados. Adición 1,2 y 1,4. Carbocationes alílicos	338
11.4. Adición 1,2 vs 1,4. Control cinético vs control termodinámico	340
11.5. Reacciones de cicloadición de Diels-Alder	341
11.6. Polimerización de dienos conjugados	346
11.7. Métodos de obtención de dienos conjugados	348

ÍNDICE	1	1
ÍNDICE	- 1	ı

Resumen de conceptos importantes	349
Ejercicios de autocomprobación	351
Soluciones a los ejercicios de autocomprobación	354
Tema 12. Alquinos (<i>Dra. M.^a Dolores Santa María Gutiérrez</i>)	361 363 364 365 374
Resumen de conceptos importantes	375
Ejercicios de autocomprobación	377
Soluciones a los ejercicios de autocomprobación	380
UNIDAD DIDÁCTICA IV	
Tema 13. El benceno y la sustitución electrófila aromática (Dra. Concepción López García)	391 393 395 398 404 407 409
Tema 14. Ataque electrófilo y nucleófilo sobre derivados del benceno (Dra. Concepción López García)	417 419 426 432 434 436 443
Resumen de conceptos importantes	443
Ejercicios de autocomprobación	443
bolaciones a los ejercicios de autocomprobación	11/

Tema 15. El grupo carbonilo: aldehídos y cetonas (Dra. Amelia García Fraile)
15.1. Definición y nomenclatura de aldehídos y cetonas
15.3. Reactividad general de aldehídos y cetonas. Estudio comparativo15.4. Reacciones de adición nucleófila
15.5. Oxidación de aldehídos y cetonas
Resumen de conceptos importantes
Ejercicios de autocomprobación
Soluciones a los ejercicios de autocomprobación
Tema 16. Enoles y enonas: aldehídos y cetonas α,β-insaturados (Dra. Amelia García Fraile) 16.1. Tautomería ceto-enol 16.2. Reacciones de condensación aldólica 16.3. Otras reacciones de condensación 16.4. Aldehídos y cetonas α,β-insaturados. Estructura y nomenclatura
Resumen de conceptos importantes
Ejercicios de autocomprobación
Soluciones a los ejercicios de autocomprobación
UNIDAD DIDÁCTICA V
Tema 17. Aminas (Dra. Concepción López García)
17.1. Definición y clasificación de las aminas
17.2. Nomenclatura de las aminas
17.3. Propiedades físicas y propiedades ácido-base
17.4. Reacciones de las aminas
17.5. Aplicaciones sintéticas de las aminas
Resumen de conceptos importantes
Ejercicios de autocomprobación
Soluciones a los ejercicios de autocomprobación

ÍNDICE	1		3
--------	---	--	---

Tema 18. Ácidos carboxílicos (<i>Dra. Amelia García Fraile</i>)	559 561
18.2. Estructura del grupo carboxilo. Propiedades físicas de los ácidos carboxílicos	563
18.3. Acidez del grupo carboxilo	564
18.4. Reactividad del grupo carboxilo	567
18.5. Ácidos dicarboxílicos	574
18.6. Métodos de obtención de ácidos carboxílicos	577
Resumen de conceptos importantes	579
Ejercicios de autocomprobación	581
Soluciones a los ejercicios de autocomprobación	584
Tema 19. Derivados de los ácidos carboxílicos (Dra. Amelia García Fraile).	591
19.1. Clasificación, propiedades físicas y características estructurales	593
19.2. Reactividad relativa de los derivados de los ácidos carboxílicos	594
19.3. Halogenuros de ácido. Nomenclatura y propiedades físicas	595
19.4. Anhídridos de ácido. Nomenclatura y propiedades físicas	599
19.5. Ésteres. Nomenclatura y propiedades físicas	601 607
19.6. Amidas. Nomenclatura y propiedades físicas	611
19.8. Peroxiácidos. Estructura, propiedades y métodos de obtención	615
19.9. Cetenas. Estructura, propiedades y métodos de obtención	616
Resumen de conceptos importantes	619
Ejercicios de autocomprobación	620
Soluciones a los ejercicios de autocomprobación	623
Tema 20. Compuestos difuncionales (Dra. Concepción López García)	633
20.1. Introducción	635
20.2. Halogenoácidos	635
20.3. Hidroxiácidos	637
20.4. Ácidos insaturados	640
20.5. Compuestos dicarbonílicos	643 647
20.0. Sintesis maionica y sintesis acethacetica	04/
Resumen de conceptos importantes	653
Ejercicios de autocomprobación	655
Soluciones a los ejercicios de autocomprobación.	657

UNIDAD DIDÁCTICA VI

Tema 21. Compuestos aromáticos policíclicos y heterocíclicos (Dra. M. a del Pilar Cabildo Miranda)	
21.1. Compuestos aromáticos policíclicos	
21.2. Heterociclos	
21.3. Heterociclos aromáticos pentagonales con un heteroátomo. Pirro	
furano y tiofeno	
21.4. Heterociclos aromáticos pentagonales con varios heteroátomo	
Azoles	
21.5. Heterociclos aromáticos hexagonales con un heteroátomo. Piridin	
21.6. Heterociclos de anillos condensados. Indol, quinolina e isoquinolin	
21.7. Alcaloides	
Resumen de conceptos importantes	•••
Ejercicios de autocomprobación	•••
Soluciones a los ejercicios de autocomprobación	
soluciones a los ejercicios de adiocomprovación.	•••
Tema 22. Carbohidratos (Dra. M.ª del Pilar Cabildo Miranda)	
22.1. Carbohidratos	
22.2. Monosacáridos. Clasificación	
22.3. Configuración de monosacáridos. Series D y L	
22.4. Reacciones generales de los monosacáridos	
22.5. Estructura cíclica de los azúcares	
22.6. Determinación del tamaño del anillo	
22.7. Azúcares naturales: disacáridos, trisacáridos y polisacáridos	
22.8. Azúcares naturales modificados	
Resumen de conceptos importantes	•••
Ejercicios de autocomprobación	
Soluciones a los ejercicios de autocomprobación	•••
Tema 23. Aminoácidos, péptidos y proteínas. Ácidos nucleicos	
(Dra. M. del Pilar Cabildo Miranda)	
23.1. Nomenclatura y clasificación de los aminoácidos	
23.2. Estructura de ion dipolar de los aminoácidos. Punto isoeléctrico	
23.3. Configuración de los aminoácidos	
23.4. Reacciones de los aminoácidos	
23.5. Síntesis de aminoácidos	
23.3. Shitesis de allilloacidos	• • •

ÍNDICE	15
--------	----

23.6. Péptidos y proteínas 23.7. Estructura y conformación de las cadenas de péptidos y proteínas. 23.8. Síntesis de péptidos	758 758 762 765 766
Resumen de conceptos importantes	770
Ejercicios de autocomprobación	772
Soluciones a los ejercicios de autocomprobación	774
Tema 24. Lípidos derivados de acetil coenzima A (Dra. M.ª del Pilar Cabildo Miranda) 24.1. Lípidos 24.2. Grasas y aceites 24.3. Fosfolípidos. Fosfoglicéridos: Lecitinas y cefalinas. Plasmalógenos y esfingolípidos 24.4. Terpenos 24.5. Esteroides 24.6. Prostaglandinas	781 783 783 787 790 791 798
Resumen de conceptos importantes	800
Ejercicios de autocomprobación	801
Soluciones a los ejercicios de autocomprobación	803
Bibliografía	807

1.1. Introducción

En los comienzos del siglo XIX, la Química era esencialmente descriptiva. Casi lo único que los químicos de aquella época podían hacer era dividir la materia en dos grandes categorías: sustancias orgánicas e inorgánicas. Las primeras se definen como compuestos que derivan directa o indirectamente de los seres vivos; mientras que las segundas son las que proceden de fuentes inanimadas.

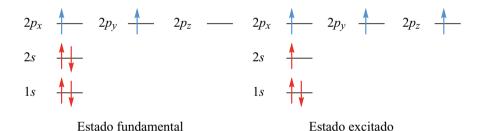
Inicialmente la Química centró su atención en las sustancias inorgánicas, siendo su análisis relativamente sencillo dado que sus moléculas consistían, por lo general, en un pequeño número de átomos diferentes combinados en proporciones definidas. Cuando los químicos comenzaron a analizar las sustancias orgánicas, el cuadro parecía ser completamente distinto. Las sustancias podían tener la misma composición y mostrar, sin embargo, propiedades muy diferentes. Por ejemplo, el dimetil éter y el etanol presentan la misma fórmula empírica (C₂H₆O), sin embargo, el primero es un gas a temperatura ambiente mientras que el etanol es un líquído. Esto llevó a suponer que a los compuestos orgánicos no se les podía aplicar las leyes de la Química, puesto que contenían muchos átomos combinados de diferentes formas.

Como consecuencia de estos descubrimientos, Berzelius elaboró la teoría del vitalismo, según la cual era necesaria la participación de una fuerza vital para la síntesis de un compuesto orgánico. Según esto, la síntesis sólo podía tener lugar en organismos vivos y nunca en un laboratorio.

Sin embargo, no pasaron muchos años, hasta que en 1828 el químico alemán Friedrich Wöhler obtuviese en el laboratorio una sustancia orgánica, la urea, por calefacción de cianato amónico, sustancia considerada como inorgánica. Después de este descubrimiento, se sintetizaron otros compuestos orgánicos utilizando sustancias inorgánicas como materiales de partida. En poco tiempo quedó totalmente rechazada la teoría de la fuerza vital, y poco a poco la Química Orgánica empezó a considerarse como una rama más de la Química, regida por las mismas leyes físico-químicas que cualquiera de las demás ramas de esta ciencia.

Así pues, la Química Orgánica quedó definida como la parte de la Química que estudia los compuestos del carbono, definición que aún está justificada, puesto que los compuestos derivados del átomo de carbono presentan propiedades notablemente diferentes a las del resto de compuestos químicos. Las diferencias más notables con los compuestos inorgánicos son: bajos puntos de fusión y ebullición, reactividad más lenta y compleja y estructuras complicadas, en ocasiones, difíciles de elucidar.

La Química Orgánica se relaciona, prácticamente, con todos los aspectos de la vida humana. En los procesos que tienen lugar en el organismo están implicados compuestos orgánicos tales como enzimas, proteínas, hormonas, ácidos nucleicos, etc.; la ropa que nos protege, nylon, poliamidas, etc., es de naturaleza orgánica; el combustible que impulsa los medios de transporte; los fármacos utilizados en el


tratamiento de las enfermedades; los plaguicidas que ayudan a combatir a los agentes transmisores de enfermedades en animales y plantas, etc. En resumen, gran parte del mundo que nos rodea está relacionado con la Química Orgánica.

1.2. El átomo de carbono

Como se ha dicho anteriormente, la Química Orgánica es la Química del carbono. A partir de carbono, como elemento fundamental, e hidrógeno, oxígeno, nitrógeno, azufre y, en algunos casos, otros elementos, pueden formularse innumerables compuestos presentes en la Naturaleza o sintetizados en el laboratorio.

Cabe preguntar ahora: ¿por qué el átomo de carbono puede dar lugar a un número tan elevado de compuestos indispensables para la vida como son, por ejemplo, las proteínas?

El átomo de carbono ocupa el sexto lugar en el sistema periódico, por lo que su configuración electrónica es: $1s^22s^22p^2$. La distribución energética de los electrones se encuentra representada en la Figura 1.1.

Figura 1.1. Distribución electrónica del átomo de carbono en los estados fundamental y excitado.

Según esta disposición cabría esperar que el átomo de carbono fuera bivalente; sin embargo, en casi todos los compuestos orgánicos el carbono es tetravalente, es decir, aporta cuatro electrones al enlace. Para que esto suceda, es necesario que un electrón del orbital 2s, mediante un aporte de energía, pase a ocupar el orbital vacante $2p_z$. La nueva distribución electrónica es la representada en la Figura 1.1. Aunque así queda explicada la tetravalencia del carbono no es suficiente para justificar la estructura y naturaleza de sus enlaces.

Para completar el octete electrónico y adoptar la configuración del gas noble correspondiente, el átomo de carbono podría tomar cuatro electrones transformándose en el anión C⁴⁻, adquiriendo la configuración del átomo de Ne, o bien desprenderse de ellos pasando de esta forma al catión C⁴⁺ y adoptando la configuración electrónica del He. Ambos procesos son imposibles ya que se requeriría una gran cantidad de energía.

Por ello, para completar el octete electrónico, el átomo de carbono *comparte* sus cuatro electrones más externos con los de otros átomos, formando enlaces covalentes. Esto hace que la característica fundamental de los compuestos orgánicos sea *la presencia de enlaces covalentes en sus moléculas*. Enlaces de carácter iónico pueden observase en casos aislados.

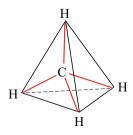
Pero tal vez, la característica más notable que distingue al átomo de carbono de todos los demás elementos, es la capacidad que presenta para formar cadenas uniéndose consigo mismo; es decir, el átomo de carbono puede compartir un electrón con otro átomo de carbono, y así sucesivamente de manera prácticamente ilimitada, por lo que las cadenas carbonadas que se originan dan lugar a un número extremadamente elevado de compuestos.

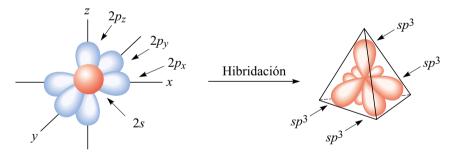
Otro elemento que desempeña un importante papel en la Química Orgánica es el hidrógeno. La inmensa mayoría de las cadenas carbonadas contienen hidrógeno en su molécula, debido a la gran facilidad que poseen ambos elementos para formar enlaces covalentes. Así pues, sobre los átomos de carbono e hidrógeno queda asentada la base de la Química Orgánica, pues sólo con estos dos elementos se origina la gran serie de hidrocarburos presentes en la Naturaleza. Los demás compuestos orgánicos resultan de sustituir átomos de hidrógeno por otros diferentes, como se verá posteriormente.

1.3. Tipos de hibridación de los orbitales átomicos del átomo de carbono

La pregunta que puede plantearse ahora es: ¿qué estructuras presentan las cadenas carbonadas? Para contestar a esta pregunta es necesario, en primer lugar, recurrir a moléculas sencillas como punto de partida para explicar la estructura de otras más complejas.

El estudio por rayos X del metano, el más sencillo de todos los hidrocarburos saturados, de fórmula CH₄, demuestra que *todos* los enlaces C–H son equivalentes, con una longitud de 1,10 Å y formando entre sí un ángulo de 109° 30', lo que les sitúa dirigidos hacia los vértices de un tetraedro regular en el centro del cual se




Figura 1.2. Estructura tetraédrica de la molécula de metano.

dispone el átomo de carbono y los átomos de hidrógeno en los vértices del mismo, como se muestra en la Figura 1.2.

Es evidente entonces, que la configuración electrónica del átomo de carbono excitado, que se había supuesto anteriormente, no explica la estructura tetraédrica del metano, ya que los tres orbitales $2p_x$, $2p_y$ y $2p_z$ del átomo de carbono darían lugar a tres enlaces C–H con ángulos de 90° , siguiendo las direcciones x, y, z, o lo que es lo mismo, los vértices de un cubo, mientras el cuarto enlace C–H originado por el orbital 2s de simetría esférica, y por tanto adireccional, podría seguir cualquier dirección del espacio; es evidente que los cuatro enlaces no serían equivalentes. ¿Cómo puede explicarse entonces la estructura del metano? Para poder hacerlo es necesario recurrir a la teoría de hibridación de orbitales.

1.3.1. Hibridación sp3. Estructura del metano y etano

Linus Pauling, en 1931, demostró que los cuatro orbitales atómicos del átomo de carbono 2s, $2p_x$, $2p_y$ y $2p_z$ pueden combinarse matemáticamente o hibridarse para formar cuatro orbitales equivalentes, orientados en el espacio hacia los vértices de un tetraedro. Estos nuevos orbitales tetraédricos, construidos matemáticamente por combinación de un orbital atómico s y tres orbitales p, se denominan orbitales hibridos sp^3 como se muestra en la Figura 1.3.

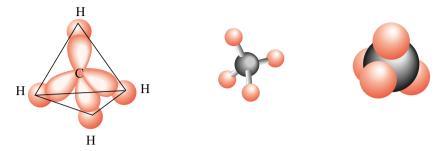
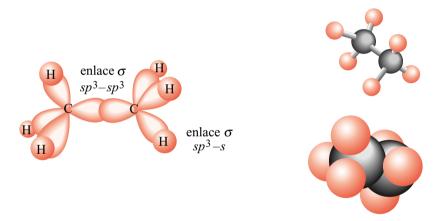
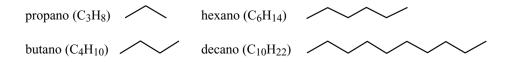


Figura 1.3. Formación de cuatro orbitales híbridos sp^3 a partir de un orbital atómico s y tres orbitales atómicos p.

El orbital sp^3 se describe como un orbital direccional y es capaz de formar enlaces muy fuertes por interacción con los orbitales de otros átomos. Por ejemplo, la interacción de un orbital híbrido sp^3 del carbono con un orbital s del hidrógeno da lugar a un enlace σ C–H.


Cuando los cuatro orbitales híbridos del carbono interaccionan con los orbitales 1s del átomo de hidrógeno, se forman cuatro enlaces σ C–H idénticos. En la Figura 1.4 está representada la molécula de metano.

Los orbitales híbridos del átomo de carbono pueden interaccionar también con otro orbital sp^3 de otro átomo de carbono distinto para formar cadenas de dos, tres,


Figura 1.4. Formación de enlaces σ en la molécula de metano y diferentes representaciones de la misma generadas por ordenador.

cuatro o un gran número de eslabones. Por ejemplo, la molécula de etano y puede representarse como se indica en la Figura 1.5.

Figura 1.5. Formación de enlaces σ en la molécula de etano y diferentes representaciones de la misma generadas por ordenador.

Como puede observarse, debido a que así lo impone la estructura tetraédrica del átomo de carbono con hibridación sp^3 , las cadenas carbonadas de los hidrocarburos saturados o alcanos, de fórmula general C_nH_{2n+2} , adoptan una forma característica en zig-zag, por lo que también se les suele representar de la siguiente manera:

