INDICE

UNIDAD DIDÁCTICA 1	Pág
TEMA 1. INTRODUCCIÓN A LA SÍNTESIS ORGÁNICA	
1.1. Introducción	29
1.2. Consideraciones generales	29
1.3. Planificación de una síntesis	32
1.4. Método de las desconexiones	33
Ejercicios de autocomprobación	43
Solución a los ejercicios de autocomprobación	45
TEMA 2. ESTRATEGIAS EN SÍNTESIS ORGÁNICA.	
2.1. Estrategias en Síntesis Orgánica	55
2.1.1. Elección Secuencial de Etapas	55
2.1.2. Quimioselectividad	57
2.1.3. Grupos Protectores	59
2.1.4. Regioselectividad	61
2.1.5. Consideraciones estereoquímicas	63
Ejercicios de autocomprobación	69
Solución a los ejercicios de autocomprobación	71

TEMA 3. FUNCIONALIZACIÓN DE COMPUESTOS ORGÁNICOS E INTERCONVERSIÓN DE GRUPOS FUNCIONALES.

3.1. Funcionalización de Compuestos orgánicos	79
3.1.1. Alcanos	79
3.1.2. Alquenos	79
3.1.3. Alquinos	82
3.1.4. Hidrocarburos aromáticos	83
3.1.5. Heterociclos	85
3.2. Interconversión de grupos funcionales	87
3.2.1. Grupo hidroxilo	87
3.2.2. Grupo amino	89
3.2.3. Grupo nitro	90
3.2.4. Grupo carbonilo	90
3.2.5. Grupo carboxílo y derivados	91
3.2.6. Grupo halógeno	92
Ejercicios de autocomprobación	95
Solución a los ejercicios de autocomprobación	97
TEMA 4. APLICACIONES DE LA TEORÍA ESTRUCTURAL	Y
FORMACIÓN DE ENLACES SENCILLOS C — C	3 7
4.1. Aplicaciones de la teoría estructural	103
4.1.1. Estructura molecular y geometría	103
4.1.1.1. Compuestos saturados	103
4.1.1.2. Compuestos con enlaces dipolares:	
efecto inductivo	105
4.1.1.3. Compuestos insaturados	105
4.1.1.4. Compuestos conjugados	107
4 1 1 5 Enlace de hidrógeno y quelación	108

4.1. 2.Carácter aromático	109
4.1.3. Acidez y basicidad	110
4.1.3.1. Ácidos	111
4.1.3.2. Bases	117
4.2. Formación de enlaces sencillos C — C	120
4.3. Especies de carbono electrófilas	122
4.3.1. Agentes alquilantes	122
4.3.2. Compuestos carbonílicos	123
4.3.3. Alquenos, iminas y cianocompuestos	124
4.3.4. Carbenos	125
4.4. Especies de carbono nucleófilas	125
4.4.1. Compuestos organometálicos	125
4.4.2. Carbaniones estabilizados	126
4.4.3. Otras especies nucleófilas	128
Ejercicios de autocomprobación	131
Solución a los ejercicios de autocomprobación	133
UNIDAD DIDÁCTICA 2	
TEMA 5. FORMACIÓN DE ENLACES CARBONO-CARBO	NO I:
Reacciones de compuestos organometálicos.	
5.1. Introducción	143
5.2. Reactivos de Grignard	144
5.2.1. Reacciones de alquilación	145
5.2.2. Reacciones con compuestos carbonílicos	146
5.2.3. Reacciones con iminas, oximas, isocianatos y nitrilos.	152

5.2.4. Reacciones con derivados carbonilicos conjugados	
con un doble enlace	154
5.3. Organolíticos	156
5.3.1. Preparación	156
5.3.2. Reacciones	157
5.4. Derivados de organocadmio y de organocinc	161
5.4.1. Preparación	162
5.4.2. Reacciones	162
5.5. Derivados de organocobre (I)	166
5.5.1. Organocupratos de litio: R ₂ CuLi	166
5.5.1.1. Reacciones de alquilcupratos de litio	167
5.5.2. Compuestos de organocobre (I): RCu	171
5.6. Reacciones de compuestos organometálicos derivados	
de alquinos terminales	173
5.6.1. Derivados de sodio, litio y magnesio	173
5.6.2. Derivados de alquinilcobre (I)	174
Ejercicios de autocomprobación	177
Solución a los ejercicios de autocomprobación	179
TEMA 6. FORMACIÓN DE ENLACES CARBONO-CARBON	O II:
Carbaniones estabilizados por dos grupos atra	yentes
de electrones	
6.1. Introducción	187
6.2. Reacciones de alquilación	189
6.2.1. Alguilación con haluros de alguilo, de alilo y de bencilo.	190

6.2.2. Alquilación con haluros de vinilo y arilo	194
6.2.3. Reacción de O-alquilación	196
6.3. Hidrólisis de los productos alquilados	196
6.4. Reacciones de acilación	198
6.5. Reacciones de condensación	201
6.6. Reacciones con compuestos carbonílicos $\alpha,\!\beta$ no saturados.	206
Ejercicios de autocomprobación	209
Solución a los ejercicios de autocomprobación	211
TEMA 7. FORMACIÓN DE ENLACES CARBONO-CARBONO Carbaniones estabilizados por un grupo atrayente electrones	
7.1. Introducción	219
7.2. Reacciones de alquilación	219
7.3. Reacciones de acilación	222
7.4. Rutas indirectas para preparar aldehídos y cetonas	WOOD
alquilados en posición α	225
7.4.1. Rutas para preparar aldehídos α-alquilados	226
 7.4.2. Rutas para preparar cetonas α-alquiladas: 	-2-1/0
"enolatos específicos"	228
7.5. Reacciones de condensación	230

7.5.1. Autocondensación de aldehídos y cetonas	230
7.5.2. Condensaciones mixtas	231
7.6. Reacción aldólica: formación de aldoles	234
7.7. Reacción de Michael	240
Ejercicios de autocomprobación	243
Solución a los ejercicios de autocomprobación	245
TEMA 8. FORMACIÓN DE ENLACES CARBONO-CARBONO	IV.
8.1. Carbaniones estabilizados por fósforo: Reacción de Wittig	253
8.1.1. Iluros no estabilizados	254
8.1.2. Iluros estabilizados	255
8.1.3. Control estérico de la reacción de Wittig	256
8.2. Carbaniones estabilizados por dos átomos de azufre	259
8.2.1. Reacciones de alquilación	260
8.3. Alquenos, arenos y heteroarenos nucleófilos	262
8.3.1. Reacciones de alquilación	263
8.3.2. Reacciones de acilación	266
8.3.3. Reacciones de adición y condensación con	
compuestos carbonílicos	271
Ejercicios de autocomprobación	275
Solución a los giorgicios do autocomprohación	277

UNIDAD DIDÁCTICA 3

TEMA 9. FORMACIÓN DE ENLACES CARBONO-HETEROÁTOMO.

9.1. Introducción	289
9.2. Enlaces carbono-halógeno	289
9.3. Enlaces carbono-oxígeno y carbono-azufre	292
9.4. Enlaces carbono-nitrógeno	295
Ejercicios de autocomprobación	303
Solución a los ejercicios de autocomprobación	307
TEMA 10. FORMACIÓN Y APERTURA DE CICLOS I.	
10.1. Introducción	317
10.2. Ciclación intromolecular por interacción electrófilo-nucleófilo	318
10.3. Reglas de Baldwin	319
10.4. Adición de Michael en procesos de formación de anillos	324
10.5. Carbociclos aromáticos	327
10.6. Anillos heteroaromáticos	329
10.6.1. Compuestos monocíclicos	330
10.6.2. Compuestos heterocíclicos benzo-fusionados	333

10.7. Anillos medianos y grandes	334
Ejercicios de autocomprobación	341
Solución a los ejercicios de autocomprobación	347
TEMA 11. FORMACIÓN Y APERTURA DE CICLOS II.	
11.1. Cicloadiciones	357
11.1.1. Reacción de Diels-Alder	357
11.1.2. Cicloadición 1,3-Dipolar	363
11.1.3. Adición de carbenos y nitrenos a alquenos	365
11.2. Reacciones electrocíclicas	371
11.3. Reacciones de apertura de ciclos	376
11.3.1. Hidrólisis y solvólisis	377
11.3.2. Apertura oxidante y reductora	378
11.3.3. Apertura pericíclica	379
Ejercicios de autocomprobación	387
Solución a los ejercicios de autocomprobación	391
UNIDAD DIDÁCTICA 4	
TEMA 12. REDUCCION I.	
12.1, Introducción	405
12.2. Hidrogenación Catalítica Heterogénea	405
12.2.1. Modelo de mecanismo	407
12.2.2. Reducción de grupos funcionales por catálisis	
heterogénea	409

12.2.2.1.	Alquenos	409
	Alquinos	411
	Aldehidos y cetonas	412
	Cloruros de ácido.	
	Reducción de Rosemund	413
12.2.2.5.	Compuestos aromáticos	413
12.2.2.6.	Grupos insaturados con nitrógeno	414
12.2.2.7.	Hidrogenolisis	414
12.3. Hidrogenación C	atalítica Homogénea	415
12.3.1. Modelo d	de mecanismo	416
12.3.2. Reducció	ón de grupos funcionales por catálisis	
homogéi	nea	416
12.3.2.1	. Alquenos y alquinos	416
12.3.2.2	. Aldehídos y cetonas	418
12.3.2.3	. Hidrogenación homogénea en síntesis	
	asimétrica	418
Ejercicios de autocom	probación	421
Solución a los ejercicio	os de autocomprobación	423
TEMA 13. REDUCC	ION II.	
13.1. Reducción con r	netales disueltos	429
13.1.1. Modelo d	de mecanismo	429
13.1.2. Metales	disueltos en ácido.	
Reduccio	ón de Clemmensen	432
13.1.3. Metales	disueltos en alcohol.	
Reduccio	ón de compuestos carbonílicos	432
13.1.4. Metales	disueltos en amoniaco ó aminas.	
Reduccio	ón de Birch	433

13.2. Reducción con hidruros metálicos	438
13.2.1. Mecanismo y estereoquímica	439
13.2.2. Hidruro de litio y aluminio y borohidruro sódico	441
13.2.3. Alcóxidos de aluminio. Reducción de Meerwein-	
Pondorff-Verley	445
13.2.4. Hidruros de alcoxialuminatos de litio	446
13.2.5. DIBAL	447
13.2.6. Cianoborohidruro sódico	447
13.2.7. Trialquilborohidruros	448
13.2.8.Borano y dialquilboranos	449
13.3. Otros métodos	451
Ejercicios de autocomprobación	453
Solución a los ejercicios de autocomprobación	455
TEMA 14. OXIDACION I.	
14.1. Principios generales	463
14.1.1. Deshidrogenación	465
14.1.2. Sustitución de hidrógeno por un grupo funcional	466
14.1.3. Abstracción de un electrón de un centro nucleófilo.	467
14.1.4. Adición de reactivos que contienen oxígeno	
a múltiples enlaces y a heteroátomos	468
14.2. Oxidación de alcanos	468
14.3. Oxidaciones alílica y bencílica	471
14.4. Deshidrogenación de alcanos	477
14.5. Deshidrogenación de alquenos	480

 Adición oxidativa a alquenos: Epoxidación e Hidroxilación 	481
14.7. Rotura oxidativa de alquenos: Ozonización	487
14.8. Oxidación de alquinos	489
Ejercicios de autocomprobación	491
Solución a los ejercicios de autocomprobación	495
TEMA 15. OXIDACION II.	
15.1. Oxidación de alcoholes y sus derivados	503
15.1.1. Formación de aldehídos y cetonas	503
15.1.2. Rotura oxidativa de 1,2-dioles	511
15.2. Oxidación de fenoles	513
15.3. Oxidación de aldehídos y cetonas	518
15.3.1. Oxidación a ácidos carboxílicos	518
15.3.2. Oxidación a compuestos 1,2-dicarbonílicos	522
15.3.3. Oxidación a ésteres	524
15.4. Oxidación de grupos funcionales que contienen	
nitrógeno	527
15.4.1. Formación de compuestos N-oxigenados	527
15.4.2. Deshidrogenación de funciones nitrogenadas	528
15.5.Oxidación de grupos funcionales que contienen azufre	529
Ejercicios de autocomprobación	533
Solución a los ejercicios de autocomprobación	537

UNIDAD DIDÁCTICA 5

TEMA 16. GRUPOS PROTECTORES I.

16.1. Introducción	549
16.2. Protección de alcoholes	551
16.2.1. Éteres	551
16.2.1.1. Metil éteres	551
16.2.1.2. Bencil- y trifenilmetil éteres	552
16.2.2. Acetales	553
16.2.2.1. 2,3-Dihidropiranil éter	553
16.2.2.2. Metil-2-propenil éter	554
16.2.2.3. Metilclorometil éter	555
16.2.3. Ésteres	555
16.2.3.1. Acetatos y trifluoroacetatos	555
16.2.3.2. Benzoatos	556
16.3. Protección de dioles	557
16.3.1. Acetales cíclicos	558
16.3.2. Carbonatos cíclicos	559
Ejercicios de autocomprobación	561
Solución a los ejercicios de autocomprobación	567
TEMA 17. GRUPOS PROTECTORES II.	
17.1. Protección de ácidos carboxílicos	579
17.1.1. Ésteres	579
17.1.1.1. Ésteres metílicos y etílicos	579
17.1.1.2. Ésteres β, β, β-tricloroetílicos	580
17.1.1.3. Ésteres terc-butílicos	581
17.1.1.4. Ésteres bencílicos	581

17.1.1.5. Otros ésteres	582
17.1.2. Otros derivados	583
17.2. Protección de grupos amino	583
17.2.1. Protonación y quelación	583
17.2.2. Acil derivados	584
17.2.2.1. Formil derivados	584
17.2.2.2. Acetil derivados	585
17.2.2.3. Benzoil derivados	586
17.2.3. Aciloxi derivados	586
17.2.4. Alquil derivados	587
17.3. Protección de grupos carbonilo	588
17.3.1. Acetales	588
17.3.1.1.1,3-Dioxolanos y otros acetales cíclicos	589
17.3.1.2. Dialquil acetales	590
17.3.2. 1,3-Oxatiolanos	591
17.3.3. Ditioacetales	592
17.4. Protección de grupos funcionales utilizando polímeros	
soportados	592
Ejercicios de autocomprobación	599
Solución a los ejercicios de autocomprobación	601
TEMA 18. ORGANOBORANOS I.	
18.1. Introducción	609
18.2. Hidroboración de alquenos	610
18.2.1. Hidroboración con borano	610
18.2.2. Hidroboración con alquilboranos	616

18.3. Hidroboración de dienos	620
18.4. Hidroboración de alquinos	621
18.5. Estereoquímica de la hidroboración	622
Ejercicios de autocomprobación	625
Solución a los ejercicios de autocomprobación	629
TEMA 19.ORGANOBORANOS II. Reactividad de organoboranos	
19.1. Reacción con peróxido de hidrógeno	637
19.2. Conversión de boranos en aminas	640
19.3. Conversión de boranos en derivados halogenados	641
19.4. Isomerización térmica de alquil boranos	643
19.5. Reacciones con monóxido de carbono	644
19.6. Reacciones de alquenil boranos	652
Ejercicios de autocomprobación	655
Solución a los ejercicios de autocomprohación	657

UNIDAD DIDÁCTICA 6

TEMA 20. DERIVADOS ORGANOFOSFORADOS I.

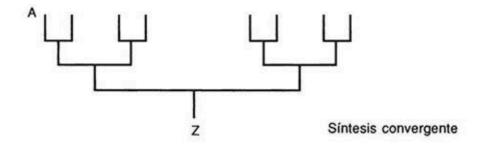
20.1. Introducción	667
20.2. Formación de dobles enlaces carbono-carbono	669
20.3. Reacciones con compuestos de azufre	674
Ejercicios de autocomprobación	679
Solución a los ejercicios de autocomprobación	681
TEMA 21. DERIVADOS ORGANOFOSFORADOS II.	
21.1. Transformación del grupo hidroxilo en halógeno	689
21.2. Formación de amidas y ésteres	691
21.3. Deshalogenación de haluros de arilo	694
21.4. Reacciones de desoxigenación	695
21.4.1. Reducción de N-óxidos de aminas	695
21.4.2. Reacciones de ciclación de nitro y/o nitroso derivados	696
21.4.3. Reacciones de desoxigenación de sulfóxidos	697
Ejercicios de autocomprobación	699
Solución a los ejercicios de autocomprobación	701
TEMA 22. DERIVADOS ORGÁNICOS DE SILICIO.	
22.1. Introducción	709

22.2. Reacciones de formación de enlaces carbono-carbono	711
22.2.1. Reacciones de carbaniones estabilizados por silicio.	711
22.2.2. Reacciones de alquenilsilanos	715
22.2.3. Reacciones de alilsilanos	717
22.2.4. Reacciones de sililenol éteres	720
22.3. Grupos sililo como protectores de la función alcohol	726
Ejercicios de autocomprobación	729
Solución a los ejercicios de autocomprobación	731
TEMA 23. ORDENADORES EN SÍNTESIS ORGÁNICA.	
23.1. Introducción	741
23.2. Programas de Síntesis Asistida por Ordenador (SAO)	746
23.2.1. Programas LHASA de Corey y SECS de Wipke	746
23.2.2. Programa CNPE de Ugi y Gillespie	752
23.2.3. Programa de Hendrickson	753
23.2.4. Programa SYNCHEM de Gelernter	754
23.2.5. Programa SOS de Barone, Chanon y Metzger	758
23.2.6. Programa CAMEO de Jorgensen	759
23.3. Métodos de Optimización	760
23.3.1. Método Simplex	761
23.3.2. Plan de Experiencias	763
BIBLIOGRAFÍA	765
APÉNDICE I	767
APÉNDICE II	775

TEMA 1 INTRODUCCIÓN A LA SÍNTESIS ORGÁNICA

1.1 INTRODUCCIÓN

La Síntesis Orgánica es la preparación de un compuesto orgánico a partir de material comercial disponible, estando implicado,en la mayoría de los casos, un procedimiento de múltiples etapas.


Aunque la Síntesis Orgánica ha sido una de las partes más importantes de la química orgánica desde sus comienzos, su desarrollo, con una base sistemática, es reciente. A ello han contribuido el avance experimental de la química teórica y estructural, el descubrimiento de nuevas reacciones, el perfeccionamiento de los métodos experimentales y un mejor conocimiento de los mecanismos de reacción.

En este tema y en el siguiente se presentará una visión resumida de como plantear una síntesis, ya que se asume que el alumno posee unos conocimientos básicos de reacciones sencillas de grupos funcionales, de conceptos de mecanismos de reacción y estereoquímica.

1.2. CONSIDERACIONES GENERALES

Las síntesis en general pueden plantearse como una secuencia lineal ó convergente de pasos dirigidos que va desde los productos de partida al producto final. Ahora bien, el axioma fundamental en síntesis es lograr el máximo con el mínimo número de pasos. El rendimiento, por consiguiente, juega un papel decisivo.

A --- Z Sintesis lineal

Hay por tanto que tener en cuenta que en una síntesis lineal el rendimiento global decrece rápidamente con el número de pasos. Aún suponiendo, por ejemplo, que el rendimiento de cada uno de ellos fuera del 90% el rendimiento global iría disminuyendo a medida que aumenta el número de los mismos.

A
$$\frac{90\%}{B}$$
 B $\frac{90\%}{C}$ C $\frac{90\%}{D}$ D $\frac{90\%}{E}$ E $\frac{90\%}{D}$ F $\frac{90\%}{D}$ G

Rto. Global = $(0.9)^6$ x $100 = 53.1\%$

En una síntesis convergente, sin embargo, es más fácil satisfacer la demanda de intermedios. En el supuesto de que todos los pasos tuvieran un rendimiento del 90%, el rendimiento global no decrece tanto como en el caso anterior.

Rto. Global =
$$(0.81 \times 0.90) \times 100 = 72.9\%$$

Por otro lado, se puede retrasar un paso de síntesis de bajo rendimiento a los últimos estadios de la síntesis.

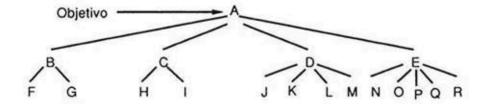
Hay también que destacar las divergencias esenciales que existen

entre los métodos industriales y de investigación. El proceso industrial más eficiente es fundamentalmente un proceso continuo, en el cual los productos iniciales fluyen continuamente a un reactor y los productos finales van saliendo también continuamente. Por el contrario en un laboratorio de investigación generalmente no se esta interesado en la producción continua de una sustancia y las preparaciones se llevan a cabo por pasos.

Otra diferencia se refiere a los subproductos. En una síntesis de laboratorio puede desecharse facilmente un subproducto tal como el ácido sulfúrico, utilizado para hidratar un alqueno, pero a escala industrial puede suponer un gasto sustancioso, lo que puede impedir el método de síntesis, por lo demás muy satisfactorio. Hoy en dia, cualquier procedimiento industrial adecuado debe implicar un mínimo de productos de desecho que requieran su eliminación.

Sea cual fuere la síntesis de un compuesto a programar hay que considerar dos aspectos fundamentales:

- La construcción del conjunto de átomos que constituye lo que puede llamarse esqueleto de la molécula (anillos, cadenas...).
- La introducción, separación e interconversión de grupos funcionales.


En realidad, es la propia naturaleza de las reacciones orgánicas lo que hace que estos dos aspectos no sean estrictamente separables.

Los grupos atómicos deben unirse entre sí aprovechando únicamente sus mutuas afinidades, conocidas y reguladas por las leyes de la Química. Sin embargo, existen técnicas de control que el químico aprovecha para dirigir la síntesis por el cauce deseado. Estas técnicas de control suponen la introducción de grupos activadores o desactivadores, grupos dirigentes, protectores ó bien cambios de conformación, configuración, etc... Haciendo una extrapolación, las ideas fundamentales a aplicar no son ni complejas ni nuevas. Consisten en reconocer que un enlace covalente se forma, en la amplia mayoría de los procesos sintéticamente útiles, por reacción de un electrófilo y un nucleófilo y en reconocer que varias unidades van a constituir la base de la molécula deseada.

1.3 PLANIFICACIÓN DE UNA SÍNTESIS

En la planificación de una síntesis es preciso desarrollar el trabajo en sentido inverso ó *antitético*, es decir, comenzando por el producto deseado y terminando con el paso inicial. En definitiva es relacionar el producto deseado con material inicial comercialmente disponible a través de una serie de reacciones, cada una de las cuales dará un solo producto con un alto rendimiento y obviamente se tendrán que evaluar caminos alternativos.

El resultado de este razonamiento se ha denominado árbol sintético.

En síntesis sencillas el químico reconoce directamente en la estructura de la molécula a sintetizar una serie de subunidades, denominadas sintones que pueden ser colocadas apropiadamente empleando reacciones bien conocidas y familiares.

Así por ejemplo, el compuesto A se obtiene mediante reacción de Mannich a partir de B, C y D.

En el caso de problemas más complejos, el árbol sintético queda pronto fuera de toda proporción. De hecho, las investigaciones actuales están dirigidas hacia la aplicación de computadoras para efectuar diseño de síntesis.

En cualquier caso, se utilizará la desconexión o método del sintón para planificar una síntesis. Este método es analítico y se comienza con la molécula deseada la cual se va rompiedo mediante una serie de desconexiones hasta los posibles materiales de partida. Es pues un análisis retrosintético.

1.4. MÉTODO DE LAS DESCONEXIONES

En la sección anterior se ha hecho referencia a los términos desconexión y sintón, entendiendo que:

Desconexión es la operación analítica que consiste en la ruptura de un enlace convirtiendo a la molécula en un producto de partida. Es la operación inversa a una reacción química y se representa por el símbolo >>> y una linea ondulada cruzada sobre el enlace que se fragmenta.

Sintón en general es un fragmento, muy frecuentemente un ión, producido por una desconexión.

Equivalente sintético es el reactivo utilizado en la práctica como sustituto del sintón.

En las siguientes secciones se irá viendo como se aplica este método con ejemplos sencillos,teniendo en cuenta como base de partida los siguientes puntos:

- Planificar la síntesis tan corta como sea posible.
- Utilizar desconexiones que correspondan a reacciones realmente conocidas.
- Utilizar desconexiones entre enlaces C X
- Utilizar desconexiones entre enlaces C C, teniendo en cuenta los grupos funcionales de la molécula.
- Escoger la desconexión que corresponda al rendimiento más elevado de la reacción si se conoce.
- Hacer desconexiones hasta productos de partida comerciales o fácilmente asequibles.

Teniendo en cuenta los puntos anteriormente citados al aplicarlos al diseño del anestésico local benzocaina 1 comenzaríamos por hacer una desconexión C — O del grupo éster, ya que la síntesis de un éster se efectúa a partir de un ácido y un alcohol.

$$CO - S - OEt$$

$$CO_2H$$

$$EtOH$$

Benzocaina

1

El paso siguiente sería desconectar ó bien el grupo — NH₂ ó bien el — COOH pero sabemos que ninguna reacción sería muy útil para hacer tales desconexiones.

Para ello tendremos que utilizar otra estrategia que consiste en el intercambio de grupos funciones (IGF), es decir, cambiar unos grupos funciones por otros que puedan ser desconectados (Ver Tema 3).

En el caso que nos ocupa podríamos efectuar los cambios siguientes:

$$\underset{\mathsf{GF}}{\Longrightarrow} \underset{\mathsf{O}_{2}\mathsf{N}}{\Longrightarrow} \underset{\mathsf{GF}}{\Longrightarrow} \underset{\mathsf{COOH}}{\Longrightarrow}$$

Todas estas desconexiones han conducido a un producto comercial y todos los pasos cumplen los requisitos de una buena síntesis.

$$O_2N$$
 H_2
 H_2
 H_2N
 CO_2H
 $E1OH$
 H^+
 1

En síntesis de compuestos aromáticos es muy útil la desconexión correspondiente a la reacción de Friedel-Crafts. Supongamos que se quiera sintetizar el compuesto 2:

Su síntesis sería por tanto:

En este caso, el reactivo que ataca al anillo de benceno es un catión, MeCO+. Cuando desconectamos un enlace de un anillo aromático normalmente esperamos este tipo de reacción pero en cualquier caso, nosotros podemos escoger no solamente el enlace a romper sino de qué forma electrónicamente hablando se rompe.

Los fragmentos A y B son sintones o fragmentos idealizados, los

cuales pueden estar implicados en la reacción o no, pero que ayudan a escoger los reactivos.

Evidentemente, en este caso escogeríamos el sintón A y no el B, puesto que el anillo aromático se comporta como nucleófilo y el cloruro de ácido como electrófilo. Así pues, cuando el análisis se completa, los sintones son reemplazados por reactivos ó lo que es lo mismo equivalentes sintéticos (ver apéndice I para la elección de equivalentes sintéticos).

Para un sintón aniónico el reactivo es por lo general el correspondiente sintón hidrogenado y para un sintón catiónico es el correspondiente haluro.

En general, las desconexiones de un grupo funcional se efectúan en posición adyacente a dicho grupo.

Supongamos que se quiere sintetizar el compuesto $CH_3(CH_2)_{10}CO(CH_2)_2CH_3$ 3. Si se hacen las desconexiones a ambos lados del grupo funcional: