ÍNDICE

Prefacio	17		
UNIDAD DIDÁCTICA I			
Capítulo I. MÁQUINAS Y MOTORES TÉRMICOS. GENERALIDADES23			
1.1 Introducción	24		
1.2 Concepto de máquina térmica			
1.2.1 Clasificación de las máquinas de fluido			
1.2.2 Distinción entre máquina hidráulica y máquina térmica.			
1.2.3 Clasificación de las máquinas térmicas			
1.3 Motores térmicos de combustión interna y de combustión extern			
tinción entre máquina térmica y motor térmico.			
1.4 Rendimiento de los motores térmicos			
1.4.1 Rendimiento del ciclo y rendimiento de la instalación			
1.4.2 Rendimiento exergético			
1.5 Cogeneración	36		
1.6 Campos de aplicación de los motores térmicos	38		
Capítulo II. FUNDAMENTOS DE LA COMBUSTIÓN	47		
2.1 Introducción	48		
2.2 Fenómenos que intervienen en el proceso de combustión. Ecuac			
gobierno	50		
2.3 Reacción estequiométrica	51		
2.3.1 Ajuste de la reacción estequiométrica	51		
2.3.2 Cálculo del dosado estequiométrico	52		
2.4 Energía liberada en el proceso de combustión. Balance de energia			
mezclas estequiométricas			
2.4.1 Procesos estacionarios en sistemas abiertos	54		
2.4.1.1 Procesos de combustión adiabáticos. Temperatura a	diabáti-		
ca de la llama	54		

	2.4.	1.2 Procesos de combustión con transmisión de calor a un	
		gundo fluido caloportador	
	2.4.2	Procesos no estacionarios en sistemas cerrados	
2.5	Combus	stión completa con exceso de aire	62
	2.5.1	Ajuste de la reacción y cálculo de la temperatura final de lo	
		productos.	
2.6		smo de la reacción de combustión	
		Velocidad de reacción química	
2.7		stión incompleta	
		Composición de los productos de combustión	
	2.7.2	Cálculo de la composición de los productos de la combustion	5n 71
		niento de la combustión	
		ación de los procesos de combustión	
		flamación de la mezcla aire-combustible	
2.11		s de premezcla	
		Deflagración	
		1.1.1 Deflagración laminar	
		1.1.2Deflagración turbulenta	
		Detonación	
2.12		s de difusión	
		Llamas de difusión con combustible gaseoso	
		Llamas de difusión con combustible líquido	
	2.12.3	Llamas de difusión con combustible sólido	89
Capítul	lo III. C	OMBUSTIBLES EMPLEADOS EN SISTEMAS Y	
cupitui		OTORES TÉRMICOS	91
3.1	Introdu	cción	92
		ración de los combustibles	
	3.2.1	Clasificación de los combustibles atendiendo a su origen	
	3.2.2	Clasificación de los combustibles atendiendo a su origen a	
		estado físico	
	3.2.3	Clasificación de los combustibles atendiendo a su carácter i	
		novable o no	97
	3.2.4	Otras clasificaciones.	
3.3	Combus	stibles de origen fósil. Características y aplicaciones	
	3.3.1	El carbón	
	3.3.2	Combustibles derivados del petróleo	
	3.3.3	Gas natural	
3.4	Combus	stibles alternativos o de sustitución. Características y aplicac	
	nes		106

3.5 Prop	piedades de los combustibles	111
3.5.	1 Propiedades relacionadas con la composición del combus	S-
3.5.2	tible	
	- r	
3.5.4 3.5.4	1 1	
3.3.4	4 Comportamiento del combustible en relación con la combustión	
3.5.:		
3.3	bles	
6 () T		
Capitulo IV	. GENERALIDADES DE LOS MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS	117
	conentes y procesos básicos de un motor de combustión intern	
	ativo	
	ficación de los MCIA	
4.2.1	Según el proceso de combustión	
4.2.2	Según el modo de realizar el ciclo	
4.2.3		
4.2.4	Según la presión de admisión	
4.2.5	Según el número y disposición de cilindros	
	ción del fluido de trabajo durante el funcionamiento del moto	
Diagr	ama p- ά y diagrama del indiciador	
4.3.1	Diagrama p - α .	
4.3.2	Diagrama del indicador	
	ntación y curvas características del motor	
	s del aire equivalente	
4.5.1	1	
4.5.2	Ciclo de aire equivalente de presión limitada	150
Capítulo V.	EL PROCESO DE COMBUSTIÓN EN LOS MOTORE	S
_	DE ENCENDIDO PROVOCADO Y EN LOS	
	MOTORES DE ENCENDIDO POR COMPRESIÓN	163
6 1 Tr		1.64
5.1 Tipos	de combustión en motores de combustión interna alternativo	S164
	oustión en MEP	
5.2.1 5.2.2	1	
	2.1 Primera fase	
	2.2 Segunda fase	
5.2.	2.3 Tercera fase	1/2

5.2.3	Factores que influyen en la determinación del avance del e	encendi-
	do	
5.2.4	Combustión anormal en MEP. Combustión detonante y en	
	superficial	175
	4.1 Combustión detonante	
5.2.	4.2 Encendido superficical	179
5.3 Com	bustión en MEC	180
5.3.1		
5.3.2	Principales funciones de la inyección en MEC. Micromezo	ela y
	macromezcla	
5.3.3	Fases de la combustión	
	3.1 Fase del tiempo de retraso	
5.3.	3.2 Combustión rápida	185
5.3.	3.3 Combustión por difusión	187
5.3.4	Factores que influyen en el diagrama p - α	188
5.4 Otro	s tipos de combustión en MCIA	192
5.4.1	Motores duales	
5.4.2	Motores de mezcla estratificada	192
5.4.3	Motores de combustión HCCI	193
	,	
Capítulo V	I. COMPRESORES VOLUMÉTRICOS	195
64.7	1 5 1	100
	ducción. Definición y clasificación	
	presores alternativos	
6.2.1	6	
6.2.2		
	2.1 Consideraciones generales	
	2.2 Potencia absorbida	
	2.3 Rendimiento volumétrico. Selección de la cilindrada	
	2.4 Rendimiento isotermo	
6.2.3	Compresión en etapas	
6.2.4	Tipos y configuraciones mecánicas	
6.2.5	Campos de aplicación	
6.2.6	Compresores alternativos de membrana	
6.2.7	Métodos de regulación de los compresores alternativos	
	presores rotativos	
	Compresores de tornillo	
	1.1 Principio de funcionamiento. Diagramas p-V	
	1.2 Tipos	
	1.3 Ventajas e inconvenientes y campos de aplicación	
6.3.2	Compresores de paletas	230

ÍNDICE 11

6.3.2.1 Principio de funcionamiento y tipo	230
6.3.2.2 Campos de aplicación	
6.3.3 Compresores Scroll	231
6.3.3.1 Principio de funcionamiento	
6.3.3.2 Campos de aplicación	
6.3.4 Compresores Roots	
6.3.4.1 Principio de funcionamiento. Diagramas p-V	
6.3.4.2 Campos de aplicación	
6.4 Soplantes y bombas de vacío	
UNIDAD DIDÁCTICA II	
Capítulo VII. TURBINAS DE GAS PARA LA OBTENCIÓN DE POTENCIA MECÁNICA	237
7.1 Introducción	220
7.1 Introducción	
7.3 Comportamiento de las turbinas de gas en el punto de diseño. Elec-	239
ción de los parámetros del ciclo termodinámico	245
7.3.1 Ciclo simple	
7.3.2 Ciclo simple regenerativo	
7.3.3 Ciclo compuesto	
7.3.4 Ciclo compuesto regenerativo	
7.4 Criterios de diseño de las instalaciones de turbina de gas	
7.5 Regulación de la carga y operación de las turbinas de gas	
7.6 Cogeneración con turbinas de gas	
7.7 Evolución en el diseño y estado del arte de las turbinas de gas	
Capítulo VIII. TURBINAS DE GAS DE AVIACIÓN	281
8.1 Fundamento de los motores de reacción	283
8.2 Principio de funcionamiento de las turbinas de gas de aviación	
8.3 Turborreactor	
8.3.1 Esquema mecánico y principio de funcionamiento	287
8.3.2 Rendimientos de un turborreactor	294
8.3.3 Parámetros óptimos del ciclo termodinámico de un turbo-	
rreactor	.298
8.4 Turbofán	
8.5 Turbohélice	
8 6 Campos de aplicación tendencias de diseño	317

Capítulo IX. INSTALACIONES DE POTENCIA BASADAS EN	
TURBINAS DE VAPOR Y PLANTAS DE CICLO	210
COMBINADO GAS-VAPOR	319
9.1 Componentes principales de las instalaciones de potencia basadas	
en turbinas de vapor	320
9.2 Influencia de los parámetros termodinámicos de las centrales de ci-	
clo de vapor	
9.2.1 Influencia de la presión del vapor a la entrada de la turbina.	333
9.2.2 Influencia de la temperatura del vapor vivo	335
9.2.3 Influencia de la presión de condensación	336
9.3 Ciclos de vapor utilizados en grandes centrales de vapor	337
9.3.1 Ciclos de vapor con recalentamiento intermedio	337
9.3.2 Ciclos de vapor regenerativos	339
9.4 Turbinas de vapor en usos industriales	348
9.4.1 Cogeneración en plantas de ciclo de vapor	349
9.4.1.1 Turbinas con toma intermedia	349
9.4.1.2 Turbinas de contrapresión	
9.5 Plantas de ciclo combinado de turbinas de gas y de vapor	351
9.5.1 Definición y clasificación de los ciclos combinados	351
9.5.2 Esquema general de una planta de ciclo combinado de tur-	
bina de gas y de vapor	
9.5.3 Características de las turbinas de gas	356
9.5.4 Caldera de recuperación de calor	
9.5.5 Características del ciclo de vapor	365
UNIDAD DIDÁCTICA III	
Capítulo X. CONCEPTOS BÁSICOS GENERALES SOBRE	
TURBOMÁQUINAS TÉRMICAS	373
10.1 Ecuación fundamental de las turbomáquinas	374
10.2 Análisis del intercambio energético que tiene lugar en las turbo-	
máquinas	
10.3 Estructura de las turbomáquinas térmicas	
10.4 Clasificación de las turbomáquinas	383
10.5 Aplicación de las ecuaciones y conceptos anteriores a turbinas y	
compresores. Tipos de escalonamientos	
10.5.1 Turbomáquinas axiales	
10.5.1.1Turbomáguinas aviales de reacción	388

10.5.1.2Turbomáquinas axiales de acción	
10.5.1.3Turbocompresores axiales	.393
10.5.2 Turbomáquinas radiales	.398
10.5.2.1Turbinas centrípetas	.399
10.5.2.2Turbocompresores centrífugos	
10.6 Criterios que se utilizan para definir el rendimiento de las turbo-	
máquinas	.403
10.7 Origen de las pérdidas en las turbomáquinas	.406
10.7.1 Pérdidas internas	
10.7.2 Pérdidas externas	
10.8 Potencia interna y potencia efectiva	
Capítulo XI. TURBINAS AXIALES	.413
11.1 Campos de aplicación de las turbinas axiales y de las turbinas	
centrípetas	.414
11.2 Parámetros que definen la geometría de una corona de álabes y el	
flujo que la atraviesa	.414
11.2.1 Relación entre la geometría de la máquina y los triángulos	
de velocidades	.418
11.3 Parámetros que permiten definir el diagrama de velocidades en	410
un escalonamiento de turbina	.419
11.4 Factores de los que dependen las pérdidas y el rendimiento en los escalonamientos de turbinas axiales	126
11.5 Importancia del diagrama de velocidades en el prediseño de la	.420
máquina. Valores óptimos de los parámetros que caracterizan la	
forma del diagrama de velocidades	122
11.5.1 Escalonamientos en los que se recupera la velocidad de sa-	.433
lida	122
11.5.2 Escalonamientos en los que se pierde la velocidad de salida	
11.5.2 Escaionamientos en los que se pierde la velocidad de sanda 11.6 Comparación entre escalonamientos de acción y reacción	
•	.441
11.7 Justificación de la necesidad de fraccionar el salto en una turbina axial	112
11.8 Rendimiento de una turbina formada por múltiples escalonamien-	.442
	116
tos	,440
Capítulo XII. COMPRESORES AXIALES	.449
12.1 Introducción	450
12.2 Parámetros de los que dependen las pérdidas en compresores	
axiales	451
W-1412	

		Correlaciones de pérdidas	452
	12.4	Valores óptimos de los parámetros que caracterizan la forma del	
	10.5	diagrama de velocidades	456
	12.5	Razón por la que es necesario utilizar múltiples escalonamientos	461
	12.6	en compresores axiales	461
	12.0	ponen la máquina y el rendimiento del tubocompresor en un con-	
		junto	
	12.7	Consideraciones sobre el diseño de turbomáquinas axiales	
		Comparación entre compresores axiales, centrífugos y volumétri-	
	12.0	cos	
Ca	apítulo	XIII. CÁMARAS DE COMBUSTIÓN	475
	12.1	Introducción	176
		Factores que condicionan el diseño de las cámaras de combustión	
	13.2	para turbinas de gas	
	13.3	Inestabilidad de la llama	
		Criterios de diseño	
		Cámaras de combustión convencionales con combustión por di-	,
		fusión	480
	1	3.5.1 Descripción del proceso de combustión	480
		3.5.2 Rendimiento	
		3.5.3 Tipos de cámaras de combustión	
		3.5.4 Problemas de contaminación asociados	
		3.5.5 Sistemas de control de la contaminación	
		Cámaras de combustión de premezcla pobre	
		3.6.1 Descripción del proceso de combustión	
	13.7	Combustibles para turbinas de gas	494
Γ	nítulo	XIV. CALDERAS Y GENERADORES DE VAPOR	197
C.	ipituio	AIV. CALDERAS I GENERADORES DE VAI OR	T //
	14.1	Definición y clasificación de las calderas	498
	1	4.1.1 Clasificación de las calderas	499
		Descripción de las calderas	
		4.2.1 Calderas de tubos de humo o pirotubulares	
		4.2.2 Calderas de tubos de água o acuotubulares	501
	1	4.2.3 Ventajas e inconvenientes de las calderas acuotubulares	
		frente a las pirotubulares	
		4.2.4 Calderas de recuperación de calor	
	- 1	4 2 5 Calderas domésticas y calentadores de agua	506

ÍNDICE 15

14.3 Procesos que tienen lugar en las calderas	08 09 10 11 14
ANEXOS Y BIBLIOGRAFÍA	
Anexo I. PROCESOS EN FLUIDOS COMPRESIBLES	27
A.1. Introducción5	
A.2. Procesos termodinámicos de importancia en el estudio de las máqu	
nas y los motores térmicos	28
A.3. Principios y ecuaciones que rigen el comportamiento de los flu- jos compresibles	31
A.3.1 Ecuaciones generales	
A.3.2 Trabajo intercambiado con el entorno	
A.4. Propiedades termodinámicas de mezclas reactivas	
A.5. Cinética química y constantes de equilibrio	
A.6. El Factor de Carnot. Rendimiento máximo de los motores tér-	
micos5	45
A.7. Concepto de velocidad del sonido y número de mach5	47
A.7.1 Velocidad del sonido5	
A.7.2 Concepto de número de Mach5	49
A.7.3 Concepto de onda de choque	
A.8. Expansión y compresión en conductos, toberas y difusores5	
A.8.1 Efecto de la compresibilidad	
A.8.2 Forma del conducto en toberas y difusores	
A.8.3 Parámetros críticos de un gas	
A.8.4 Comportamiento del fluido en conductos sin fricción	
A.8.4.1 Expresión del gasto en toberas y difusores	
A.8.4.2 Expansión en conductos convergentes	38
te- divergente5	50
A.8.5 Comportamiento del fluido en conductos con fricción5	
A.8.6 Evaluación de las pérdidas en toberas y difusores	
A.8.6.1 Comparación de los casos de expansión y compresión5	

	A.8.6.2 Coeficientes para evaluar la fricción en toberas y difu-	
	sores	566
A.	8.7 Expresión de la presión crítica en función del rendimiento	
	isentrópico de la tobera	568
A.9.	Ecuación de Bernoulli	569
A.10.	Pérdida de carga en flujos compresibles	570
A.11.	Justificación de que los flujos con M<0,2 se comportan como	
	incompresibles	571
A.12.	Influencia de los números de Reynolds y de Mach en las pérdi-	
	das asociadas a los procesos de flujos compresibles	572
A.13.	Flujo alrededor de un perfil aerodinámico en cascadas de álabes	575
A.14.	Eficiencia de intercambiadores de calor de superficie	577
Anexo II.	Tablas	581
Bibliograf	ría	589
Lista de s	ímholos	593

CAPÍTULO 1

MÁQUINAS Y MOTORES TÉRMICOS GENERALIDADES

Objetivos fundamentales del capítulo:

- Distinguir entre máquina hidráulica y máquina térmica
- Entender por qué en una máquina térmica motora es posible extraer energía térmica del fluido que la atraviesa y transformarla en energía mecánica que pueda ser utilizada en diversas aplicaciones.
- Entender por qué en una máquina térmica generadora es posible aumentar la energía térmica de un fluido, consiguiendo aumentar su nivel de presión y de temperatura, a base de consumir energía mecánica del exterior, que se introduce a través del eje como par de accionamiento.
- Distinguir entre máquina térmica motora y motor térmico.
- Entender la diferencia entre motor de combustión interna y externa.
- Que el alumno tenga clara la clasificación de las máquinas térmicas y los motores térmicos, entendiendo en qué se diferencian unos tipos de otros en cuanto a su principio de funcionamiento y esquema constructivo.
- Conocer cómo de define el rendimiento en el caso de los motores de combustión externa y en el caso de los de combustión interna

Que el alumno conozca los principales campos de aplicación de los distintos tipos de motores y máquinas térmicas, así como las razones por las cuales entran en competencia en las distintas aplicaciones, pudiendo justificar cuáles son más idóneos en cada caso.

 Comprender el papel que juegan los equipos térmicos, generadores de vapor y cámaras de combustión, en las instalaciones de potencia.

Figura 1.1 Esquema de máquina de fluido

1.1 INTRODUCCIÓN

En este capítulo se va a presentar una panorámica general de los distintos tipos de máquinas y motores térmicos destacando algunas diferencias básicas en su principio de funcionamiento y revisando los principales campos de aplicación en cada caso. A pesar de que este capítulo se lee con cierta facilidad lo cierto es que algunas de las ideas que se presentan no se asimilan correctamente si no se repasan ciertos conceptos estudiados en Termodinámica, algunos de los cuales se han sintetizado en el anexo I. Por otra parte, las razones por las cuales, por ejemplo, unos tipos de motores son más adecuados para determinados campos de aplicación no se entenderán en profundidad hasta que no se haya abordado el estudio del fundamento y diseño de las máquinas y motores térmicos que se realiza en posteriores capítulos. No obstante, ha parecido conveniente empezar el estudio con este capítulo de generalidades, si bien se considera imprescindible volver sobre el mismo una vez estudiado el resto de la materia, ya que al releerlo, se analizará, sin duda, con otra perspectiva.

1.2 CONCEPTO DE MÁQUINA TÉRMICA

1.2.1 CLASIFICACIÓN DE LAS MÁQUINAS DE FLUIDO

Antes de exponer el concepto de *máquina térmica* es conveniente aclarar que estas máquinas están englobadas dentro de un conjunto de máquinas más amplio, bajo la denominación de *máquinas de fluido*. Se va a empezar por indicar qué se entiende por máquina de fluido para poner de manifiesto qué particularidades tienen las máquinas térmicas que las distinguen de otro tipo de máquinas de fluido.

Se denomina *máquina de fluido* a toda máquina por la que circula un fluido (fluido de trabajo) de forma que el conjunto de elementos que la constituyen permiten que se realice un intercambio de energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible en el fluido que atraviesa la máquina.

Las máquinas de fluido se pueden clasificar atendiendo a distintos criterios:

- → Dependiendo de si el fluido disminuye o aumenta su energía a su paso por la máquina:
 - *Motoras* $E_1 > E_2$

El fluido disminuye su energía¹ a su paso por la máquina, y en consecuencia se obtiene energía mecánica aprovechable en forma de par motor en el eje de la máquina.

Ejemplos: turbina térmica, turbina hidráulica, máquina de vapor.

• *Generadoras* $E_1 < E_2$

El fluido aumenta su energía a su paso por la máquina debido a que la máquina absorbe energía mecánica del exterior mediante un par de accionamiento.

Ejemplos: bomba centrífuga, compresor axial, compresor alternativo, compresor rotativo de paletas, etc.

- → Dependiendo si el fluido de trabajo es incompresible o compresible:
 - *Máquinas hidráulicas* $\rho_1 \cong \rho_2$

El fluido que evoluciona por la máquina es incompresible o se comporta

¹ Desde otro punto de vista se podría decir que disminuye su exergía al atravesar la máquina.

como tal, lo que tiene importantes implicaciones, como se pone de manifiesto en el epígrafe siguiente.

Ejemplos: bomba, turbina hidráulica, ventilador.

• *Máquinas térmicas* $\rho_1 \neq \rho_2$

El fluido que evoluciona por la máquina es compresible y varía su densidad de forma significativa al atravesar la máquina.

Ejemplos:

- *Motoras* $\rho_1 > \rho_2$: turbina térmica, máquina de vapor.
- Generadoras $\rho_1 < \rho_2$: turbocompresor, compresor volumétrico de lóbulos, etc.
- → Dependiendo de si el fluido circula de manera continua o en cada instante evoluciona una cantidad bien definida de fluido:
 - Dinámicas o turbomáquinas

Ejemplos: turbina, bomba centrífuga, turbocompresor.

Volumétricas o de desplazamiento positivo

Ejemplos: bomba alternativa, compresor alternativo, compresor rotativo de paletas, compresor rotativo de tornillo, etc.

1.2.2 DISTINCIÓN ENTRE MÁQUINA HIDRÁULICA Y MÁQUINA TÉRMICA

Como puede verse, tanto las máquinas hidráulicas como las máquinas térmicas pueden ser motoras o generadoras, volumétricas o turbomáquinas; lo que diferencia a ambos tipos de máquinas es concretamente qué tipo de fluido, compresible o incompresible, evoluciona por su interior. En ese sentido hay que destacar que la compresibilidad del fluido juega un papel fundamental en el intercambio energético que tiene lugar entre el fluido compresible y el exterior, tal como se expone en el anexo I, basándose en la ecuación del Primer Principio de la Termodinámica. En los fluidos compresibles es posible transformar energía térmica en energía mecánica expandiendo el fluido, así como aumentar la energía térmica de un fluido, y por tanto su nivel de presión, comprimiendo el fluido. Como consecuencia de ello, al distinguir entre máquinas térmicas y máquinas hidráulicas se está diferenciando qué tipos de energías estarán presentes en el término que se ha denominado genéricamente "E", en la clasificación de las máquinas de fluido. Las máquinas térmi-

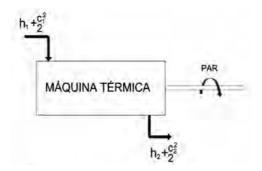


Figura 1.2 Ejemplo de máquina térmica dinámica

cas utilizan *fluidos compresibles* y en ellas es posible transformar parte de la energía térmica de estos fluidos en energía mecánica y viceversa; por tanto, "E" incluirá energía térmica y energía cinética, ya que la variación de la energía potencial entre la entrada y la salida de la máquina puede despreciarse. En los *fluidos incompresibles* esta transformación no es posible, de forma que sólo se podrá aprovechar su energía mecánica, en concreto su energía cinética. Por tanto, si a la entrada de una máquina hidráulica el fluido tiene una energía térmica asociada, que se puede incrementar por la fricción a su paso por la máquina, ésta no intervendrá en el intercambio energético

1.2.3 CLASIFICACIÓN DE LAS MÁQUINAS TÉRMICAS

- → Caso de sistema abierto, característico de las turbomáquinas:
 - Máquinas motoras (turbinas): Debido a la compresibilidad del fluido, dicho fluido transforma su energía térmica en energía cinética mediante un proceso de expansión. Dicha energía cinética será aprovechada para generar un par motor en el eje de la máquina.

Posteriormente, en el capítulo 11, se analizará cómo son las turbinas térmicas internamente; es decir, cuál es su diseño constructivo para que se pueda realizar esa transformación de energía térmica en mecánica (cinética en un principio) y que a su vez, posteriormente, la energía mecánica se manifieste en forma de par motor en el eje de la máquina. Se puede, no obstante anticipar que el fluido atraviesa en este tipo de máquina conductos convergentes en su mayoría.