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CHAPTER 4

General Approach for the Finite Element Method.
Application in Elastic and Steady-State Field Problems.

4 1

INTRODUCTION

The aim of this chapter is to present the general basis of the Finite Element Method
(FEM). FEM is a way to obtain approximate solutions of partial differential equations.
The approach is general, even though initially we will use the particular example of
structural analysis to understand how the method is formulated.
For this purpose, we will first set forth the integral formulation of the boundary value
problem, and subsequently we will introduce the concept of approximation. Then we
will detail the characteristics that differentiate FEM from other methods. Once this
general introduction is complete, we can deal with issues more focused on FEM: the
concept of an element will be introduced and we will show how to synthesize global
properties. The intention is to give the reader an overall understanding of the concepts
that are characteristic of FEM.
After this discussion, we’ll focus on linear plane elastic problems and steady state field
problems.

4 2

DIFFERENTIAL APPROACH TO THE BOUNDARY VALUE PROBLEM

A boundary value problem is described by a mathematical model that approximates the
solution in an acceptable way, usually in terms of

165



166 Chapter 4 General Approach for the FEM

- equations in the domain
Au = f in Ω (4.1)

- and certain conditions (i.e., other equations) on its boundary

Cu = g en ∂Ω (4.2)

where A is a differential operator of order 2k, and C another differential operator
on the boundary. Both operators are characteristic of boundary value problems (in
the most general case using vector functions, these operators are matrices of partial
derivatives) u is the field variable, and may be a scalar or a vector quantity composed
of a basis of several variables (in the Navier approach it is the displacement function
vector). The value of u depends on the location (space) and the instant we are studying
(time). Finally, f and g are known functions which constitute the problem data and
they are consistent with the operators. The definition spaces for u and f are U and
F which, in general, are metric spaces, or spaces where the distances between functions are
defined. Metric spaces allow us to determine if the functions are the same (if the distance
between them is zero) or not, as well as to evaluate the relative error of two approximate
solutions. Thus A is an operator that transforms elements of U into elements of F and
can be written as

A : U → F (4.3)

This differential approach, based on the analysis of a differential element of the con-
tinuum, leads to a set of differential equations. It often requires that excessive restric-
tions be enforced on the variable field (it must be differentiable up to order 2k as stated
above): it may be impossible to find a function that meets these derivability require-
ments.
On the other hand, the formulation of equations that govern boundary value problems
also allows an integral approach. There are two alternatives:

• a minimization of a functional by a variational process, and

• a weak formulation (though this alternative encompasses the first).

The integral approach allows solutions with a lower degree of regularity, i.e., it reduces
the demands on the solution, which as we will see later requires differentiable functions
only up to order k. It is also of interest to note that when the differential equation has a
solution, the strong or differential solution coincides with the weak solution. Conversely,
there may be a solution using a weak approach, which means that the scope of solutions
must be widened.
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Figure 4E1.1

Example 4.1
Study the behavior of a inextensible and totally flexible membrane located in the xy
plane subjected to loads in the z-axis direction. Assume as well that the membrane
stresses in its plane do not depend on the section in which they are acting, i.e,

Tx = Ty = T (4E1.1)

The vertical components are denoted by Qx and Qy as can be seen in Figure 4E1.1.

Solution:
Establishing equilibrium in the x and y directions

∂T

∂x
= 0

∂T

∂y
= 0

⇒ T = cte (4E1.2)

as well as the z direction
∂Qx
∂x

+
∂Qy
∂y

+ p = 0 (4E1.3)

on the boundary (see figure 4E1.1), equilibrium leads to

−Qx cosαds−Qy sinαds− psds = 0 (4E1.4)
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Figure 4E1.2

from which
ps = Qx cosα+Qy sinα (4E1.5)

Equations 4E1.3 and 4E1.5 can be written more compactly as{
∇TQ+ p = 0 in Ω

nTQ+ ps = 0 in ∂Ω
(4E1.6)

The compatibility equations in domain Ω relate displacements w in direction z as well
as the slopes:

γ =

(
γx

γy

)
(4E1.7)

so that
γ = ∇w (4E1.8)

and on the boundary
w = wg (4E1.9)

Constitutive equations relate stress to deformations, and in this case (see Figure 4E1.2),
we have:

Q = Tγ (4E1.10)

with the same meaning for each component.
When the compatibility equations are inserted into constitutive relations, and the result

is inserted into the equilibrium equations, we have

∇T (T∇w) + p = 0 in Ω (4E1.11)
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This is the field equation of the problem in question, to which we will add boundary
conditions, which include

• displacement (Dirichlet or essential)

w = ws in ∂Ω (4E1.12)

which will henceforth be considered homogenous, or w = ws = 0 in this case and

• force (Neumann or natural)

nTQs = ps in ∂Ω (4E1.13)

where ∂Ω = ∂Ω ∪ ∂Ω

4 3

INTEGRAL APPROACH TO THE BOUNDARY VALUE PROBLEM

The weak approach consists in taking the dot product of two members of the differential
equation (4.1) with a known function Ψ ∈ Ckn(Ω). The resulting integration in the
domain is ∫

Ω

ΨTAudΩ =

∫
Ω

ΨTfdΩ (4.4)

The first member of the equation (4.4) can now be integrated by parts k times (recalling
that operator A includes derivatives up to order 2k). For the linear case, which is this
problem, we obtain the weak form∫

Ω

(HΨ)T (Su)dΩ−
∫
∂Ω

(FΨ)T (Gu)dΩ =

∫
Ω

ΨTfdΩ (4.5)

where H, S, F and G are linear differential operators, the first two having order k, G
contains derivatives from the order (k) to the order (2k − 1) and F is of order (k − 1).
The previous process shows that the solution for (4.1) is the one where the projection
of Au on U is equal to the projection of f on U , assuming it satisfies the demands of
existence and uniqueness (Lax-Milgram theorem [44]).
This means that for every Ψ ∈ U function (as we can see, the projection space coincides
with space U where the field variable u belongs), we can establish

< Au,Ψ >=< f ,Ψ > (4.6)

which is identical to (4.4) with a different notation, in which

< a, b >=

∫
Ω

abdΩ
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means energetic inner product. To make this possible, a and b must be bounded, so their
integral makes sense as well as their square (so that < f ,f > makes sense).In other
words, these must be square-integrable functions in Ω, that is to say, L2(Ω).
The subsequent integration by parts of (4.6) leads to expression (4.5) and a realization
that U must be a space whose functions are differentiable up to order k (the order of
operator A is 2k). In addition, these derivatives must be square-integrable functions. A
space with these characteristics is called a Sobolev space of integer k, Hk

n(Ω), with n = 2.
The second term of the integral equation (4.5) includes the Dirichlet (or first-type) and
the natural (Neumann or second-type) boundary conditions, i.e. ∂Ω = ∂ΩN ∪ ∂ΩD and
∅ = ∂ΩN ∩∂ΩD, where subscripts refer to the type of condition (Dirichlet or Neumann).
To simplify the Dirichlet boundary conditions, we can extract them from the second
term of (4.5) by making sure that the chosen functions Ψ are zero at the corresponding
∂ΩD boundary. This integral formulation can also be achieved by applying physical
concepts such as energy and variational calculus, as will now be explained
A variational principle specifies a scalar quantity (a functional) Π, defined by an integral
expression

Π =

∫
Ω

B(u,
∂u

∂x
, · · · )dΩ +

∫
∂Ω

D(u,
∂u

∂x
, · · · )dΓ (4.7)

where u is the unknown function and B, D, are specified operators.
The solution to the continuum problem is a function u, which makes the functional Π

stationary with respect to small δu variations. Thus the variation is

δΠ = 0⇒
∫

Ω

δuTL(u)dΩ +

∫
∂Ω

δuTM(u)dΓ (4.8)

and this expression must be true for any small variation of u (δu). Equivalently

L(u) = 0; M(u) = 0 (4.9)

where M(u) and L(u), may or may not be the differential equations (4.1) that govern the
problem with the boundary conditions (4.2). In the general case the variational principle
is called natural and the equations of (4.8) are known as differential equations of Euler’s
variational principle.
It is easy to show that for any variational principle we can establish a corresponding
system of Euler equations, but unfortunately the inverse does not hold true and only
certain forms of differential equations are Euler equations of a variational functional.
In the case of self-adjoint linear differential equations we can establish natural varia-
tional principles in a relatively simple way.
Thus, when the differential equation is

Lu = Au+ f = 0; (4.10)

and the self-adjoint or symmetric A operator means∫
Ω

ΨTA(u)dΩ =

∫
Ω

uTLΨdΩ (4.11)
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the variational principle can be written as

Π =

∫
Ω

[
1

2
uTA(u) + uTf ]dΩ + boundary terms (4.12)

where we will consider the homogeneous Dirichlet boundary conditions. The natural
or Neumann boundary conditions are not included, though these can be added easily.
To verify that you can set these variational principles, consider the variation

δΠ =

∫
Ω

[
1

2
δuTA(u) +

1

2
uT δ(Au) + δuTf ]dΩ

⇒
∫

Ω

[
1

2
δuTA(u) +

1

2
uTAδu+ δuTf ]dΩ

δΠ =

∫
Ω

[δuT (A(u) + f ]dΩ (4.13)

which proves the point.
Finally, there is a further interpretation of (4.5) which applies only to function Ψ as a
function of virtual displacements, given the solitary restriction that it meet the Dirichlet
boundary condition. In the elastic case, the terms HΨ and FΨ acquire the physical
meaning of deformation and displacement functions corresponding to a virtual state
(expressed as the superscript Ψ). This can be written as∫

Ω

εΨTσdΩ−
∫
∂Ω

vΨTT dΓ =

∫
Ω

ΨTfdΩ (4.14)

This is nothing more than a formulation of the Principle of Virtual Work (PVW), where the
virtual work of the external forces of a system in equilibrium (σ,f ,T ) on the compatible
virtual displacements (Ψ, εT ) (corresponding to the sum of the second member and the
second term of the first member of (4.11)) is equal to the internal energy due to the
virtual strains (the first term of (4.11)).

Example 4.2
Present the weak form in the case of a stretched membrane as outlined in the example
in the previous section.

Solution:
You can either multiply

∇T (T∇w) + p = 0 (4E2.1)

by the known function and integrate by parts, or replace the equilibrium equation with



172 Chapter 4 General Approach for the FEM

its equivalent obtained through the Principle of Virtual Work, obtaining
∫

Ω
(∇Ψ)TT∇wdxdy =

∫
Ω

Ψpdxdy +
∫
∂ΩN

Ψpsds

∀Ψ/Ψ = 0 in ∂ΩD

w = w in ∂ΩD

(4E2.2)

To ensure that the integrals above make sense, we must verify that the field variable w
as well as the function Ψ belong to the space of square integrable functions:

Ψ ∈H1(Ω)⇒
∫

Ω

[(
∂Ψ

∂x
)2 + (

∂Ψ

∂y
)2 + Ψ2]dxdy <∞ (4E2.3)

In the general case, when we have loads Pk or an elastic support (with stiffness Kk) in
the domain, the integral equation is∫

Ω

(∇Ψ)TT∇wdxdy =

∫
Ω

Ψpdxdy +
n∑
k=1

Ψ(xk, yk)[Pk −Kkw(xk, yk)] (4E2.4)

4 4

APPROXIMATION

In the previous section the problem was formulated in integral terms, but early on we
discovered that it is not easy to obtain an explicit solution by directly solving the original
differential equation.
Instead, we can attempt find an approximate solution in a subspace UN with finite
dimension N from the original search space U , which has a basis function ϕi.

u ≈ uN =

N∑
i=1

ϕiai (4.15)

To approximate the unknown function (field variable) with a linear combination of
known functions, the problem is reduced to:

• defining the basis of functions ϕi, and

• obtaining the parameters, coefficients or generalized coordinates ai of the approx-
imate solution in the basis (4.15).

By substituting the approximate uN (4.15) in the integral equation (4.5), and bearing in
mind that integral and differential operators are linear, we can write

N∑
i=1

ai

∫
Ω

(HΨ)T (Sϕi)dΩ−
N∑
i=1

ai

∫
∂Ω

(FΨ)T (Gϕi)dΓ =

∫
Ω

ΨTfdΩ (4.16)
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an equation with N unknowns (values of ai, i = 1, ..., N )), that may arise for N weight-
ing functions or the projection ψj ∀j = 1, .., N linearly independent, leading to a sys-
tem of N equations with N unknowns. If you match up the equations of this approach
and the weighting functions ψi = ϕi, the result constitutes the Bubnov-Galerkin formu-
lation. This system of equations can be written as

N∑
i=1

ai

∫
Ω

(Hϕj)
T (Sϕi)dΩ−

N∑
i=1

ai

∫
∂Ω

(Fϕj)
T (Gϕi)dΓ =

∫
Ω

ϕjfdΩ ∀j = 1, .., N (4.17)

and its solution will allow us to identify coefficients ai.
Clearly, the projection space (basis Ψi) and the solution subspace (of basis ϕi) do not
need to be equal. In fact, the definition of these spaces is one of the main differences
between approximation methods.
When dealing with approximation, the values uN do not have to satisfy the Dirichlet
boundary conditions (uN belongs to a vectorial subspace) except if they are zero. In
this case, a solution can be found by assuming that there is a function u0 that satisfies
the boundary conditions, and then, instead of employing (4.15), using the following
method

u− u0 ≈ uN =
N∑
i=1

ϕiai (4.18)

From now on, to simplify the formulation, we will only consider homogeneous Dirichlet
boundary conditions.
Next, we will include a brief outline of different approximation methods, which will
also help us place the theory in a broader context.

1. Weighted residual methods
These methods define the error or residual from (4.1), as

R(uN) = AuN − f (4.19)

The idea is to find coordinates ai of the approximation uN , defined in (4.15) that
minimize error. This can be achieved through the norm

‖v‖2 =< v, v > (4.20)

or setting the orthogonality of the error with respect to a subspace (defined by the
base ϕi). This approach is the basis of

• the Galerkin method, where the residual is orthogonal to the subspace of the
same dimension (N) where the approximation was made (see (4.15))

< R(uN), ψj >= 0 ∀j = 1, .., N (4.21)

The Petrov-Galerkin method is used if the approximating and the weighting
spaces are different: if they match, the Bubnov-Galerkin method (more com-
monly known as the Galerkin method) is used.
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As can be seen, expression (4.21) is the starting point of the previously de-
veloped weak formulation. Note that in the Bubnov-Galerkin method the
weighting conditions must comply with the Dirichlet homogeneous bound-
ary conditions because the approximation requires it: in this case both the
approximation and the weighting functions match.

• the least squares method, which minimizes the integral over the domain of the
squared residual or norm (for vectorial functions ‖R(uN)‖2), i.e.

∂

∂ai

∫
Ω

‖R(uN)‖2dΩ = 0 (4.22)

Operating ∫
Ω

R(uN)
∂R(uN)

∂ai
= 0 (4.23)

which, as shown, is just the Petrov-Galerkin method, in which we have

chosen as weighting functions ϕi =
∂R(uN)

∂ai
.

• the point collocation method, where we choose Dirac delta distributions the
simplest of possible weighting functions:

ϕi = δi (4.24)

By definition of the direct delta distribution (2) the integral equation (4.21) is
reduced by setting the residue to zero at specific xi points in the domain, i.e.,

R(uN) = 0, in xi ∀i = 1, ..., N (4.25)

2. Ritz Method
This is the only variational method we will discuss (others are Treffez, Ka-
toronovick, etc.) because of its equivalence with the Galerkin method.
For the Ritz method, the best method to obtain the system of equations is to find
where the value of the functional Π is a minimum.
If we consider the case of self-adjoint operators, the variational principle can be
written in the form of (4.12). Inserting the approximate value from (4.15), we have

Π =

∫
Ω

[
1

2
(
N∑
i=1

ϕiai)A(
N∑
i=1

ϕiai)− (
N∑
i=1

ϕiai)f ]dΩ + t.c (4.26)

and minimizing

∂Π

∂a
= 0 =

1

2

N∑
i=1

ai

∫
Ω

(Aϕj)ϕidΩ−
N∑
i=1

∫
Ω

fϕidΩ + t.c (4.27)

which is identical to (4.18) and (4.21) using the Bubnov-Galerkin method.
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Example 4.3
Obtain the Galerkin approximation for the problem of a stretched membrane pre-
sented in Examples 4E1 and 4E2

Solution:
This involves inserting the approximate valueswN into the weak formulation.
The approximate values of the field variable, in this case the displacement normal to
the plane of the membrane, are obtained as a combination of N functions of a particular
basis of functions

wN (x, y) =
N∑
i

ajϕj(x, y) (4E3.1)

Since the problem is being solving used a Galerkin approximation, the functions of this
basis coincide with the weight functions (ϕi = ψi) thus

N∑
i

aj [

∫
Ω

(∇ϕi)TT∇ϕjdxdy +

N∑
i

ϕi(xk, yk)kkϕj(xk, yk)] =

∫
Ω
ϕipdxdy +

N∑
i

ϕi(xk, yk)Pk (4E3.2)

which can be written as
N∑
i

kijaj = fj (4E3.3)

where 
kij =

∫
Ω

(∇ϕi)TT∇ϕjdxdy +
N∑
i

ϕi(xk, yk)kkϕj(xk, yk)

fj =
∫

Ω
ϕipdxdy +

N∑
i

ϕi(xk, yk)Pk

(4E3.4)

4 5

THE FINITE ELEMENT METHOD

4 5 1 FEM characteristics

Without a doubt, FEM is currently the most widely used method of approximation.
It has all the salient features of the other approximation methods because it uses an
integral formulation as well as a typical linear combination of functions. However, it
possesses some essential characteristics that distinguish it. These are discussed below.
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