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CHAPTER 1

Introduction. Classical Approximation

1.1 - INTRODUCTION

The aim of this chapter is to organize some generally known concepts in ways
that are useful for analyzing stress and strain in bar structures. The first step is to
establish the basic problem: what variables we want to know and what tools are
available. When we express this problem in algebraic terms, we obtain an equal
number of unknowns and equations.

In this first section we demonstrate how the basic equations of mechanics are more
than adequate for structural analysis.

Then, we propose the stiffness method as a simple guideline for solving systems of
equations, using a substitution methodology. The third section repeats the process
using matrix notation, which is more convenient for computers. The final section
summarizes our key findings.

To illustrate our theory with a practical application we will use a basic structure,
likely well known to the readers: the hyperstatic lattice in Figure 1.1(a). The size and
characteristics are indicated in the figure:

Area of the bars: 10 cm?, elastic modulus: 2.1E6kg/cm?, applied load: F' = 5000 kg.

We have numbered each specific node or bar in the structure, as shown in figure
1.1(b), as well as a coordinate or axis system representing the directions and positive
orientations, both as loads and displacements.

1.2 - POSING THE PROBLEM

This section explains the goals of this analysis as well as giving the necessary tools
for a typical lattice calculation. When the problem is solved, the following quantities
will be obtained:

Stress in each bar: since the only consideration is axial stress, it represents an
unknown in each bar. It will be noted as Ni, indicating the bar number in the
subscript. Positive tensile strength is assumed.
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(@) (b)

Figure 1.1

Displacements of the nodes: horizontal and vertical directions, which means two
unknowns per node, notated as u; and v;.

Support reactions: an unknown in each restricted direction (constraint) which will
be notated as X, Y;, depending on whether it is horizontal or vertical.

Sometimes, the above quantities are summarized in the following symbolic rela-
tionship expressed by the function below that considers the problem in two dimen-
sions:

I=b+2n+r

where:

I: number of unknowns
b: number of bars

n: number of nodes

r: number of constraints
In the proposed structure:

b =6 (Ni,N2, N3, Ng, N5, No)
2n :8 (Ul,'Ul,UQ,'UQ,U3,U3,U4,'U4) :>I: 17
r =3 (X17Y17Y2)

The u;, v1 and v constrained displacements at the supports are considered redun-
dant, since it is already known that they are void.

Once the number of unknowns is established, the problem is finding enough equa-
tions for a system with a solution. The first set of these equations are the boundary
conditions, which are given by the number r (one for each unknown reaction, since
a reaction appears at the nodes where a single displacement is imposed). In the
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example structure:
Uy = V1 = V2 = 0 (11)

The force balance at the nodes gives two equations for each node. These equations
link the stress in the elements to the externally applied loads at the node. Figure 1.2,
shows the equations for node 4 of the structure.

Figure 1.2

Usually, in order to avoid changing the sign of the loads from positive to negative
(when 5000 kg is applied to node 4), the signs of all the equations are reversed. Then,
for the entire structure the following is obtained:

Node 1 —N71 — Ngcosdb=X; ; —Ny— Ngsindb=Y;

Node 2 N1 + Nscos4b =0 ;7 —Ny — N5sindb =Y, (12)
Node 3: N3 4+ Ngcosdb =0 ; Ny 4+ Ngsindb =0

Node 4: —N3— Nycosdb =15000 ; Ny + N5sindb =0

With the systems (1.1) and (1.2) 2n + r equations are derived. For the other
b equations, two basic concepts from structural mechanics are used: constitutive
relations and compatibility.

In the case of lattice elements, the behavior is expressed using a well-known

relationship:
AL;

The direct application of this expression introduces a new unknown factor for
each bar: the increase in length. This variable is of interest as it can represent the
deformation of each element. In the most general case, it is also an intermediate
variable calculation that can be eliminated by simply substituting the compatibility
equations that relate the increase in length of each bar to the movements of its end
nodes.

17
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In the case of small displacements, obtaining an analytical expression for these
equations is a question of basic geometry. Figure 1.3 shows this process.

ALy =Ur; —Upr; = ujcosa + vjsina — (u; cos o + v; sin )

Figure 1.3

When the equations of behavioral compatibility are substituted into these equa-
tions, for each bar the following is obtained:

 AE
=

N k(ujcosa—l—vjsina—uicosa—visina)

The b equations necessary to get the same number of equations and unknowns
have been defined. The numerical values of the parameters A, E, L, o, when substi-
tuted in the b equations of the example structure, yield

Bar 1:N;=1.05E5(ug —u1)
Bar 2: Ny =1.05E5(vs — v2)
Bar 3:Ns=1.05E5(us — u4)
Bar 4: Ny =1.05E5(vs — vy) (1.3)
Bar 5 _ 1.05E5

2
_ 1.05E5

2

ZN5 (UQ—UQ—'LL4+'U4)

Bar 6: Ng

(U3 +’U3 — U —1}1)

1.3 - THE DIRECT STIFFNESS (OR DISPLACEMENT) METHOD

When system (1.1) is replaced in (1.3) and then in (1.2) a set of 2n equations is
obtained, in this case 2n = 8, which represents the structure’s nodal equilibrium. The
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equilibrium equations are the last to be substituted. The expression for the structure

being studied is:
—1.05E5uy — %(Ug«} +u3) = X3
—1.05E5v4 — IQL\/?)(W, +wvs)=Y;
1.05E5uy + 1'2L\/§5(u2 —ug+v4)=0
—1.05E5v3 — ]-ZL\/?(UQ ug+vg) =Ys
1.05FE5(us — uyg) + 1'20\5/25 (us+v3) =0
1.05E5v3 + %(1@ +v3) =
—1.05E5(ug — uyg) — 12L\/§5(u2 — uy + vq) = 5000
1.05E5v4 + %(W —ug+v4) =0

(1.4)

An important aspect of this system is that those equations where support reactions
do not appear can be extracted and solved separately. This is possible because
the 2n — r equations, once solved, generate 2n-r unknowns (nodal displacements

unimpeded). Considering the example, the system in matrix form is:

1 1 1
A+53) 0 0 ~ovi NG ”
1 1

0 (+35) 3 -1 0 s
1.05E5 0 NG 1+ 55) 0 0 v3
1 1 1 Uu
“ava = 0 U453 s !
1 1 1 V4

oG 0 0 W (1+ ﬁ)

After solving the system, it is obtained:

Ug 0.02381
usg 0.09115
vy | = | —0.02381 | em
Uy 0.11496

Uy 0.02381

5000

(1.5)



20 Chapter 1 = Introduction. Classical Approximation

Once the displacements are known, the other variables can be found very easily.
The reactions can also be obtained by substituting these displacements in the r
equilibrium equations (in this case r = 3) for the supports which were set aside when
moving from system (1.4) to system (1.5). As a result, the following is obtained

X3 —5000
Y1 | = | —5000 | kg
Yo 5000

Obtaining the stress in the bar only requires the replacement of the displacements
in system (1.3). For instance, for bar 5 of the structure it results

~ 1,05E5
)

5 (ug — vy —ug +v4) = —3535,35  kg.

1.4 - MATRIX FORMULATION

The previous section ended up with the matrix expression of the system but either
formulation can be used. Which one to choose is, in principle, irrelevant. However,
when analyzing a structure it becomes an important consideration because this
choice designates the solution method.

First represent the equilibrium at the nodes with the following matrix notation:

F; y 0
+ (4 —
This last equation states that the external loads applied to node i plus the sum of
the actions that are exerted on the node by all the bars k have a zero result. The

subscripts « and y refer to the direction in which the balance is considered. The
equations shown before can now be expressed as

{F} Y@ =Y st
Fiy k k

where the quantity Q¥ represents the action of the bar on the node and its inverse S¥
(the reaction of the node on the bar).

o= {0, - f5)
i Sty
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Figure 1.4

In the case of this lattice in two dimensions, it is

Node 2: 0=S3, +S3 +53,
0 52 53 S8
Node 3: = dvo dwo 3w
0 Sgy Sgy Sg’y
5000 53 S4 5
Node 4 : _ 4x + 4x + S4£K
0 Sffy Sﬁy S;i’y

and the resulting system of equations is

0 Sy + 53, + S5,
0 S2 Ss S
0 o= s2, S3, S8, (1.6)
5000 S3 St S3
41 + 4x + 4x
0 Sjy Sffy S;i’y

In the matrix equation (1.6) the equations that are related to the reactions have
been eliminated.

The next step is to obtain a relationship between the actions S¥ and the nodal
displacements. By following a parallel process and using the theory illustrated in
the previous sections, the concepts of compatibility and constitutive relations can
be applied. Then, for any bar k with end nodes i and j (Figure 1.4) the following
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expression is obtained:

Sk — Ny cos —cosw
k : .
Siy | ) —Ngsina | —sina
k - = N
S5y N, cos o COS (v
S ]’?y N sina sin o
But AE
kg . .
N, = T (uj cos o+ v; sin o — u; cos @ — v; sin «v)
k
Therefore
Sk cos? o cosasin o —cos? —cos asina
Sk ALE) cos arsin v sin’ a —cosasinae  —sin®a
Sj’?m Ly — cos? o —cosasina cos? o cos v sin o
Sj’»“y —cosasina —sin’® a cosasina sin? o

The matrix relation above can be expressed in terms of the sections delimited by
the dashed lines, as follows:

Sk Kk Kk u;
Il P (17)
Sk KY  KE ) \u;

This definition will be shown to be very useful. Usually this relationship is written
as
S=K.u
K. is called the elemental stiffness matrix. This matrix has a very intuitive interpre-
tation. One can imagine a displacement vector

o O O

This vector corresponds to a horizontal unitary displacement at node i, while all
others are held at a displacement of zero. When multiplied by the stiffness matrix, a
force vector is obtained:

K1 K2 Ki3 Kn 1 Ky,
Ko Ky Kiz Ky 0 ) Kau
K31 Kz K3z Ksg 0o | Ka
Ky Kio Ky Ky 0 Ky

& & &

i~
<
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These forces are the actions on the bar at its ends. One can think of each column of
the bar stiffness matrix as the load vector that appears when a unitary displacement
is given in the corresponding direction, while holding the other displacements equal
to zero.

For the example structure, it is:

S%m 0 -1 0 (751
St 0 0 0 O

L1 0585 v
Si. -1 0 1 0 U
Say 0 0 0 0 Vo
S3. 0 0 0 O U
S2 0 1 0 -1

2 L 10585 2
Sz, 0 0 0 0 us3
S3, 0 -1 0 1 vs
SgT 0 -1 0 us
S3 0 0 0 0

o\ 05E5 v
S3. -1 0 1 0 Uy
S3, 0 0 0 0 vy
St 0 0 0 0 Uy
St 0 1 0 -1

L 10585 v
Si. 0 0 0 0 Uy
Siy 0 -1 0 1 vy
S5, 1 -1 -1 1 U
S5, | _1osE5 -1 1 1 -1 vy
S5, 2v2 | -1 1 1 -1 Uy
53, 1 -1 -1 1 Va
S, 1 1 -1 -1 U
Sy, | _105E5 (1 1 -1 -1 vy
SS. 2v2 | -1 -1 1 1 us3
53, -1 -1 1 1 v
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Substituting the last six systems of linear equations into equation (1.6) and taking
into account the boundary conditions, the following is obtained

U2
{0} = 105E5{1H{ua} + 10585 0 0 0 }{ wy o+
U3
(0
1.05E5{ - }
2v2 t
Vg
us
(5
0 00 0 10 -1 0\ vs
— 1.05E5 us b+ LOSES
0 00 1 00 0 0)) u
U3
V4
10585 (1 1) [ g
2v2 \1 1 v3
us
5000 10 1 0\ | v 0 0\ [ u
— 1.05E5 +1.05E5
0 0 00 0)) u 0 1) | w
Vg
Uz
L1058 (~1 1 -1
—_— U
2v2 \1 -1 1 *
(%

When the above equations are ordered, a system whose matrix expression is that
given in (1.5) can be obtained. Formally, it is written as

F=Ku

F represents the vector of applied loads at the nodes, u the vector of displacements
that occur at the nodes, and K the coefficient matrix of the system, known as the
stiffness matrix. Some of the properties of this matrix, which will be studied in more
detail in subsequent chapters, are symmetry and that all of the elements of the main
diagonal are positive.

The process of substituting the bar equations (1.7) into the global equilibrium
equations (1.6) can be organized into an algorithm known as assembly, which will
be explained in detail later.
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1.5 - CONCLUSIONS

The reader should not be discouraged if the first question that is being asked (how
does a computer evaluate structural equations? goes unanswered for the time being.
Everything that has been shown so far is the basis of every simple matrix calculation
code. However, in order to build these codes, some knowledge of programming
tools is required. It unnecessarily complicates things to explain how to do this at this
juncture.

The reader should not be worried about the limited scope of a 2-D structural anal-
ysis of a lattice. All of these concepts are quite general and the analytical expressions
can be different for each case. By carefully studying the exercises presented at the
end of the unit, it will be possible to see how these ideas can be applied to several
structural elements.

After reading this first chapter, the reader should understand that the analysis
of bar structures with matrix calculations does not require any new concepts. This
approach is, unfortunately, limited in scope. For example, if a structure has two- and
three-dimensional elements, the terms bar and node become ambiguous, leaving the
analyst helpless. It is needed to seek new, more powerful and more general insights.

All this will be discussed in the following chapters.

1.6 - APPLICATION EXAMPLES

Example 1.1
Development of the stiffness matrix for the bars of a plane frame.

Solution:

To solve this exercise it is required to analyze the relationship between displace-
ment and stress for the most general case of a two-dimensional bar structure. It is
assumed that this bar is capable of transmitting bending moments (as opposed to
lattice elements) and is in axial strain (unlike in the classical analysis of frames).

It is necessary to relate the six stresses and strains as indicated in Figure 1E1.1.

Begin by expressing the relationship in a convenient coordinate system. Here, the
most appropriate coordinate system is defined by the axial and normal directions of
the bar (Figure 1E1.2). These axes are often labelled local because they only refer to
the bar in question. In local coordinates, the relationship can be expressed as

S =K.

25
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Figure 1E1.1

Figure 1E1.2

To obtain the terms of the stiffness matrix K., give unitary displacements to succes-
sive bar ends holding all the others fixed.

As an example, in Figure 1E1.3 the calculations for the first three columns are
developed.

Applying symmetries it is very easy to calculate the remaining terms. The result
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is a stiffness matrix

Figure 1E1.3

Z4 0
0 12L§I
0 GLE2[
_ETA 0
0 . 12L}§I
0 6521

EA
L

0
0
EA

L
0
0

0

_12EI
LS

6ET
-5

0

12E1
L3

_6EI
L2

0

6ET1
2

2E1

_6EI
L2

4E1
L

(1E1.1)

The problem is therefore solved. This matrix can be expressed in any coordinate
system (see 1E1.1). It is only necessary to establish the relationship between the
forces and displacements. According to Figure 1E1.4, this relationship (represented

in matrix form) is:

>
I

Ly

27
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where

8yi
0*
5 — K3
Oz
Oyj
07

The coordinate changing matrix L also includes stress. Then it can be written as

This coordinate changing matrix has the property that both its transpose and its

inverse are identical.

Turning to the relationship between forces and displacements expressed in local

Cos &
—sin«

0

0
0
0

Figure 1E1.4
sina 0 0
cosa 0 0
0 1 0
0 0 cosa
0 0 —sina
0 0 0

Ss*=L"S

0

0

0
sin av
cos o

0

_ o O O o O

(1E1.2)

coordinates and making the change of coordinates, the following is obtained

Therefore, the matrix for the most general case would be

K,=LK 2 L"

S =K, =LT'S=K,*L"u=S=LK."LTu

(1E1.3)
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Example 1.2

Find the displacements at points A and B of the structure in Figure 1E2.1(a), given
the following information: Cross-sectional area of bars = 900 cm?; moment inertia
of bars =8.0E5 cm*; material modulus of elasticity = 2.0E5 kg/cm?; applied load
F =10000 kg.

Solution:

As with the above mentioned plane truss, the first step is to identify bars and
nodes by their number as seen in Figure 1E2.1(b). Then, identify the unknowns and
the equations of the problem. The unknowns are the nodal displacements and the
equations are the equilibrium equations for the same nodes.

@) (b)
Figure 1E2.1

Building on the previous exercise, the calculation can begin by obtaining the
stiffness matrix for each bar (given in Equation (1E1.1)), which relates the forces
and displacements at the ends as in Equation (1E1.3). The displacements and the
stress at the end of each bar should have the same orientation so that there are no
difficulties using the equilibrium equations. Then, if positive directions are chosen
for displacement and rotation in each node z, y, 6 in Figure 1E2.1(b), the angles to
use for the change of coordinates matrix L are: « = 90, o« = 0 and o = —90 for bars 1,
2 and 3, respectively. When it is taken into account (1E1.2), the following is obtained
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Bar1
0 -1 o0]o 0 9E5 0 0 —9E5 0 0
1 0 0]o0 0 0 2.4E5  2.4E7 0 _2.4E5 24ET
o 0o 1]o0 0 0 2.4E7  3.2E9 0 —2.4E7 1.6E9
"l o o olo -1 o0 —9E5 0 0 9E5 0 0
0 0 0]1 0 0 —24E5 —24E7 0 2.4E5 —24E7
o0 0 0]o0 1 0 2.4E7  1.6E9 0 _2.4E7 3.2E9
01 0] o o o w1 2.4E5 0 —92.4E7 | —2.4E5 0 —2.4E7 uy
-1 0 0| 0 0 0 vy 0 9E5 0 0 —9E5 0 v
00 1] 0 0 o0 0, | —24EB7 0 3.2E9 | 2.4E7 0 1.6E9 0,
00 0] o 1 o us | | —2.4E5 0 24E7 | 2.4E5 0 2.4E7 ua
00 0]-1 0 o0 va 0 —9E5 0 0 9ES5 0 va
00 0| 0 0 1 05 —2.4E7 0 1.6E9 | 2.4E7 0 3.2E9 0,
(1E2.1)
Bar 2
1 0 olo o o 6E5 0 0 —6E5 0 0
01 0|0 0 0 0 7.11E4  1.07ET 0 —7.11E4 1.07ET7
o 0o 1]0 0 o 0 1.07E7  2.13E9 0 —1.07E7  1.07TE9
"1 o 0o o1 0 o —6E5 0 0 6E5 0 0
0 0 0lo 1 o 0 —7.11E4 —1.07E7 0 7.11E4 —1.07E7
0 0 0|0 0 1 0 1.07E7  1.07TE9 0 —1.07E7  2.13E9
1 0 0lo o0 o us 6E5 0 0 —6E5 0 0 ua
01 0|0 0 0 va 0 711B4  1.07ET 0 —7.11E4  1.07ET va
00 1/0 0 o0 62 | 0 1.07E7  2.13E9 0 —1.07E7 1.07E9 0,
00 0|1 0 o0 us | | —6E5 0 0 6E5 0 0 us
00 0|0 1 0 v3 0 ~7.11E4 —1.07E7 0 7.11E4 —1.07E7 vs
00 0|0 0 1 03 0 1.07E7  1.07E9 0 —1.07E7  2.13E9 03
(1E2.2)
Bar 3
01 0] 0o o o 9E5 0 0 —9E5 0 0
-1 0 0| 0 0 o0 0 2.4E5  2.4E7 0 _2.4E5  2.4ET
3 00 1] 0o o0 o 0 2.4E7  3.2E9 0 —2.4E7 1.6E9
- 00 0] 0o 1 o0 —9E5 0 0 9E5 0 0
0 0 0|-1 0 0 0 —24E5 —24E7 0 2.4E5 —24E7
00 0| 0o o0 1 0 2.4E7  1.6E9 0 _2.4E7 3.2E9
0o -1 0o]lo o0 o us 2.4E5 0 24E7 | —2.4E5 0 2.4E7
1 0 0|0 0 0 v3 0 9E5 0 0 —9E5 0
0 0 1]0 o0 0 05 | 2.4E7 0 3.2E9 | —2.4E7 0 1.6E9
0 0 0|0 -1 o0 wa | | —2.4E5 0 —92.4E7 | 2.4E5 0 —2.4E7
0 0 0|1 o0 O va 0 —9E5 0 0 9ES5 0
0 0 0|0 0 1 04 2.4E7 0 1.6E9 | —2.4E7 0 3.2E9
(1E2.3)

As in the case of the plane truss, the first equations to consider are those that define
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the boundary conditions:
u; =0; vy=0;, 6;=0
ug =0; v4=0; 6,=0

These boundary condition relationships can be used to establish a set of equations
that represent the structural equilibrium of the nodes. This allows the removal of
equations where reactions do not appear. Then it can be written as:

F2z S%m + S%m
Node 2: Fyy ¢ =14 S3,+53,
Mo, M} + M2
F3, S3,+ 53,
Node 3: Fsy, ¢ =14 S3,+53,
M; M3 + M3

Thus the system of equilibrium equations (analogous to (1.6)) for this case is

10000 S3, + 53,
0 S, + 53,
01z M; + Mg (1E2.4)
0 S3, + 55,
0 S3, + 53,
0 M3 + M3

If the expressions obtained for the reaction of the bars are substituted in (1E2.4),
Sk, on the nodes as a function of internal displacement given by (1E2.1), (1E2.2) and
(1E2.3), the following system of equations is obtained:

10000 8.4E5 0 24E7 —6E5 0 0 s

0 0 9T711E5 107E7 0  —711B4 1.07E7 | | w

0 | |24E7 107ET 53389 0  —LOTET 1.07E9 || 6.

o | |-685 0 0 8.4F5 0 2.4F7 us

0 0 —711B4 —107E7 0  9711E5 —1.07E7| | v

0 0  107E7 107E9 24E7 —1.07E7 5.33E9 ] \6;
(1E2.5)

and the solution is

us = 0.039 cem;ve = 0.0029 cem;0; = —1.61E —4 rad

31





