ÍNDICE

Pr	esent	ación		17
1			ón al diseño electrónico asistido por ordenador. Ciclo de vida nulación, montaje y pruebas	ı. 21
	1.1		lucción, orientaciones para el estudio y objetivos	23
	1.2		ras clave	23
	1.3		so de simulación	23
		1.3.1	Captura de esquemas y elección de componentes	24
		1.3.2	Compilación – expansión	25
		1.3.3	Simulación	25
		1.3.4	Diseño del circuito impreso	25
		1.3.5	Simulación térmica y de interferencias	26
		1.3.6	Fabricación	26
		1.3.7	Control de calidad	26
		1.3.8	Testabilidad	27
	1.4	El cicl	lo de vida	28
		1.4.1	La fase de diseño del ciclo de vida	29
		1.4.2	La fase de simulación del ciclo de vida	30
		1.4.3	La fase de montaje y pruebas del ciclo de vida	31
	1.5	Resun		33
	1.6	Ejerci	cios de autoevaluación	33
	1 7		cios propuestos	38

2	Sím	bolos y	estándares eléctricos y electrónicos. Normalización	41
	2.1		ucción, orientaciones para el estudio y objetivos	43
	2.2	Palabr	ras clave	44
	2.3	Introd	ucción histórica	44
		2.3.1	Las primeras normas eléctricas	48
		2.3.2	Normas eléctricas internacionales	49
		2.3.3	La normalización tras la Segunda Guerra Mundial	50
	2.4	Las no	ormas	50
		2.4.1	Normalización	51
		2.4.2	Normalización y certificación	52
		2.4.3	Normalización eléctrica	53
	2.5	Organ	ismos de normalización	54
		2.5.1	ISO - Organización Internacional de Normalización	55
		2.5.2	CEI - Comisión Electrotécnica Internacional	56
		2.5.3	IEEE - Instituto de Ingenieros Eléctricos y Electrónicos	58
		2.5.4	UIT - Unión Internacional de Telecomunicaciones	59
		2.5.5	CENELEC - Comité Europeo de Normalización Electrotécnica	60
		2.5.6	CEN - Comité Europeo de Normalización	60
		2.5.7	AENOR - Asociación Española de Normalización y Certificación	61
	2.6	Símbo	olos electrónicos	63
		2.6.1	Símbolos básicos	63
		2.6.2	Dispositivos de acoplamiento y accionamiento	68
		2.6.3	Símbolos más comunes	70
		2.6.4	Producción, transformación y conversión de la energía eléctrica	74
		2.6.5	Instrumentos de medida y señalización	79
		2.6.6	Semiconductores	82
		2.6.7	Operadores analógicos	83
		2.6.8	Operadores lógicos binarios	87
	2.7	Abrev	iaturas	88
	2.8	Norma		89
		2.8.1	Electricidad	89
		2.8.2	Electrónica	92
	2.9	Simbo	ología de componentes electrónicos	96
		2.9.1	Corriente	96
		2.9.2	Líneas y conductores	97
		2.9.3	Clavijas y conectores	98
		2.9.4	Fusibles	98
		2.9.5	Baterias y generadores	99
		2.9.6	• •	100

		2.9.7	Bobinas	1
		2.9.8	Transformadores)2
		2.9.9	Relés)3
		2.9.10	Resistencias)4
		2.9.11	Condensadores)5
		2.9.12	Diodos)6
		2.9.13	Transistores)7
		2.9.14	Transistores mosfet e igfet)8
		2.9.15	Tiristores)9
		2.9.16	Válvulas de vacio	0
		2.9.17	Filtros	1
		2.9.18	Antenas	2
		2.9.19	Audio y video	3
		2.9.20	Sistemas digitales	4
		2.9.21	Instrumentación	5
		2.9.22	Ondas e impulsos	6
		2.9.23	Otros símbolos electrónicos	7
	2.10	Resum	en	8
	2.11	Ejercic	ios de autoevaluación	9
	2.12	Ejercic	ios propuestos	25
•	ъ			
3	_		le diseño de circuitos eléctricos y electrónicos. Funcionalidades	
	•	nparaci		
	3.1		acción, orientaciones para el estudio y objetivos	
	3.2		as clave	
	3.3		acción a la simulación de circuitos	
	3.4		a de los simuladores	
	3.5	3.5.1	actual en la simulación de electrónica	
		3.5.2		
		3.5.3		
	2.6		1	
	3.6		<u>C</u>	
		3.6.1	Capturador de esquemáticos	
		3.6.3		
			•	
		3.6.4 3.6.5	Tipos de análisis	
		J.U.J	TUSIDIUCESAUDI PIAIICO	U
	27		· ·	70
	3.7		s y desventajas del uso de simuladores	

		3.7.2 Desventajas
	3.8	Principales herramientas de uso académico y profesional 17
		3.8.1 Herramientas de simulación
	3.9	Software libre y simulación electrónica
		3.9.1 Introducción e historia del software libre aplicado a la simula-
		ción electrónica
		3.9.2 Programas de código abierto para simulación electrónica 17
	3.10	Resumen
	3.11	Ejercicios de autoevaluación
	3.12	Ejercicios propuestos
4	Dise	ño de placas de circuito impreso 19
	4.1	Introducción, orientaciones para el estudio y objetivos
	4.2	Palabras clave
	4.3	Introducción al diseño de PCB
	4.4	Normas IPC
	4.5	Terminología
		4.5.1 Las capas de un circuito
	4.6	Diseño de circuitos impresos
		4.6.1 Los parámetros de diseño de PCBs
		4.6.2 Técnicas de enrutado
		4.6.3 Herramientas de diseño de un circuito
	4.7	Los montajes SMD
		4.7.1 El proceso de montaje SMD
	4.8	Resumen
	4.9	Ejercicios de autoevaluación
	4.10	Ejercicios propuestos
5	Selec	ción de Componentes Básicos Eléctricos y Electrónicos. Parámetros 23
	5.1	Introducción, orientaciones para el estudio y objetivos
	5.2	Palabras clave
	5.3	Simulación por ordenador. Definición y conceptos
		5.3.1 Conceptos de simulación
		5.3.2 Definición de modelo
		5.3.3 Ventajas y desventajas de simulación
		5.3.4 Estructura de los modelos de simulación
	5.4	Analogía eléctrica-térmica
	5.5	Componentes básicos eléctricos
		5.5.1 Conductores eléctricos 24

		5.5.2	Disipador	248
		5.5.3	Resistencias lineales	249
		5.5.4	Resistencias variables	263
		5.5.5	Resistencias no lineales	266
		5.5.6	Bobinas	278
		5.5.7	Condensadores	283
	5.6	Semico	onductores	292
		5.6.1	Diodos	292
		5.6.2	Transistores	298
		5.6.3	Marcado de semiconductores	306
	5.7	Resum	nen	308
	5.8	Ejercio	cios de autoevaluación	308
	5.9	Ejercio	cios propuestos	313
6	Dise	ño de si	istemas lógicos digitales desde alto nivel	317
	6.1	Introdu	ucción, orientaciones para el estudio y objetivos	319
	6.2	Palabra	as clave	319
	6.3	Introdu	ucción a los sistemas digitales	319
		6.3.1	Antecedentes	319
		6.3.2	FPGAs	321
		6.3.3	HDLs	325
	6.4	Diseño	y simulación de sistemas lógicos digitales con Quartus Prime.	
		Casos	prácticos	328
		6.4.1	Inicio del software Quartus Prime	329
		6.4.2	Creación de un nuevo proyecto	330
		6.4.3	Diseño de circuitos electrónicos digitales mediante esquemático	s337
		6.4.4	Diseño de circuitos secuenciales mediante grafos de estados	344
		6.4.5	Diseño de circuitos secuenciales mediante el lenguaje de descripción hardware VHDL	352
		6.4.6	Diseño mediante VHDL y esquemáticos	359
		6.4.7	Verificación del diseño. Vector de pruebas y simulación	366
	6.5	Resum		375
	6.6		cios de autoevaluación	375
	6.7	•	dades	380
	6.8			388
	0.0	Eleteic	cios propuestos	300

7	Mod	elado d	e componentes electrónicos digitales	393
	7.1	Introdu	cción, orientaciones para el estudio y objetivos	395
	7.2	Palabra	s clave	396
	7.3	Introdu	cción al modelado de componentes electrónicos digitales	396
	7.4	Modela	ado de componentes electrónicos digitales con OrCAD PSPice	397
		7.4.1	Modelado de los niveles lógicos de las señales	398
		7.4.2	Modelado de estímulos de entrada	398
		7.4.3	Ejemplo de simulación de un circuito electrónico digital con	
			OrCAD PSpice	399
		7.4.4	Modelado de sistemas digitales mediante comandos de PSpice	402
	7.5	Modela	ado en VHDL de componentes electrónicos digitales	406
		7.5.1	Introducción	406
		7.5.2	Introducción al software de simulación de VHDL ModelSim	410
	7.6	Modela	ado de un decodificador	414
	7.7	Modela	ado de un codificador	421
	7.8	Modela	ndo de un multiplexor	425
	7.9	Modela	ndo de una unidad aritmética	429
	7.10	Modela	ndo de una memoria ROM	432
	7.11	Modela	ado de un contador síncrono	434
			ado de un registro de desplazamiento	439
	7.13		ado e implementación de máquinas de estado	442
		7.13.1	Introducción	442
		7.13.2	Descripción estructural e implementación cableada fija de una	
			máquina de estados de tipo Moore	443
		7.13.3	Descripción estructural e implementación cableada fija de una	
			máquina de estados de tipo Mealy	447
		7.13.4	Descripción estructural e implementación microprogramada	
			de una máquina de estados de tipo Moore	449
		7.13.5	Descripción funcional en VHDL de una máquina de estados	
			de tipo Moore	451
		7.13.6	Descripción funcional en VHDL de una máquina de estados	
			de tipo Mealy	455
	7.14		on de componentes nuevos descritos en VHDL	457
		7.14.1	Introducción	457
		7.14.2	Diseño estructural en VHDL utilizando componentes defini-	
			dos en paquetes	457
	7.15	Resum	en	465
			ios de autoevaluación	465
			lades	474
	7.18	Eiercic	ios propuestos	479

8	Tipo	os de análisis de circuitos electrónicos digitales	487
	8.1	Introducción, orientaciones para el estudio y objetivos	489
	8.2	Palabras clave	489
	8.3	Introducción al análisis de circuitos electrónicos digitales	489
	8.4	Introducción al análisis de circuitos electrónicos digitales con OrCAD	
		PSpice	491
		8.4.1 Análisis temporal con OrCAD PSpice	491
		8.4.2 Análisis eléctrico con OrCAD PSpice	497
	8.5	Introducción al análisis de circuitos electrónicos digitales con compi-	
		ladores de VHDL	500
	8.6	Resumen	510
	8.7	Ejercicios de autoevaluación	510
	8.8	Actividades	517
	8.9	Ejercicios propuestos	526
9	Dice	ão do sistemas analógicos o través do FDA A	533
7	9.1	não de sistemas analógicos a través de FPAA Introducción, orientaciones para el estudio y objetivos	535
	9.1	Palabras clave	535
	9.2	Introducción a los FPAA	535
	9.3		537
		9.3.1 CAB	538
		9.3.3 FPAA de Tiempo Discreto – Capacidades Conmutadas	539
	0.4	1	
	9.4	FPAA de Anadigm	540 541
		1	-
	0.5	9.4.2 SingleApex Development Board	543
	9.5	AnadigmDesigner®	546
		9.5.1 Los CAM	551
		9.5.2 Reconfiguración Dinámica en FPAA	555
	0.6	9.5.3 El proceso de diseño de un circuito para FPAA: VHDL-AMS	557
	9.6	Simulación del funcionamiento de un diseño en un FPAA	557
		9.6.1 Simulación Genérica de FPAA	558
		9.6.2 Simulación a través de AnadigmDesigner®	562
		9.6.3 Simulación con Placas Reales de Desarrollo	569
		9.6.4 Estado de la Simulación de FPAA	569
	9.7	Ejemplo de diseño y programación de un circuito en un FPAA	569
		9.7.1 Implementar en AnadigmDesigner® y simular el comporta-	
		miento	572
		9.7.2 Requisitos extra, la reconfiguración dinámica	575
	9.8	Resumen	585

	9.9	Ejercic	ios de autoevaluación	585
	9.10	Activid	lades	590
	9.11	Ejercic	ios propuestos	603
10	Mod	elado d	e componentes electrónicos analógicos	605
	10.1	Introdu	cción, orientaciones para el estudio y objetivos	607
	10.2	Palabra	s clave	607
	10.3	Modela	ado y simulación con PSpice	608
		10.3.1	El programa de simulación PSpice	610
		10.3.2	Principales tipos de análisis de circuitos	612
		10.3.3	Ejemplo de simulación con PSpice: doblador de tensión	612
		10.3.4	Comandos para modelado y simulación con PSpice	613
	10.4	Simula	ción con OrCAD Capture	613
	10.5	Modela	ndo y simulación de dispositivos pasivos	622
		10.5.1	Ejemplo de modelado y simulación de un resistor	624
		10.5.2	Modelado y simulación del transformador de tensión lineal .	625
		10.5.3	Modelado y simulación del transformador de tensión real	627
	10.6		ado y simulación de dispositivos activos	629
		10.6.1	Modelo del diodo semiconductor	629
		10.6.2	Curva característica del diodo semiconductor	633
		10.6.3	El diodo Zener	636
		10.6.4	Recortadores, fijadores y multiplicadores	640
			El transistor bipolar o BJT	644
			El amplificador diferencial	660
			El transistor de efecto de campo o FET	663
		10.6.8	Modelado del transistor MOSFET	667
			ado del amplificador operacional	670
	10.8		on de componentes nuevos con OrCAD PSpice	671
			Uso en PSpice de un subcircuito definido en una biblioteca .	671
		10.8.2	Creación de un componente nuevo para OrCAD Capture	671
		Resum		676
		•	ios de autoevaluación	676
			lades	681
	10.12	2Ejercic	ios propuestos	685

11	Tipo	s de ana	álisis de circuitos electrónicos analógicos	689
			acción, orientaciones para el estudio y objetivos	691
	11.2	Palabra	as clave	692
	11.3	Introdu	ıcción	692
	11.4	Análisi	s en continua	693
		11.4.1	Análisis del punto de polarización	693
			Análisis de transferencia o de pequeña señal	696
			Análisis de sensibilidad	699
		11.4.4	Análisis de barrido en continua	700
	11.5	Análisi	s transitorio	702
		11.5.1	Análisis transitorio con PSpice	704
		11.5.2	Análisis transitorio con OrCAD Capture	704
	11.6	Análisi	s paramétrico	709
		11.6.1	Análisis paramétrico desde OrCAD Capture	709
			Análisis paramétrico con PSpice	713
	11.7	Análisi	s de alterna	713
		11.7.1	Análisis de barrido en frecuencia	715
		11.7.2	Magnitudes complejas	718
		11.7.3	Análisis de ruido	719
	11.8	Análisi	s de Fourier	721
			s avanzados	724
		11.9.1	Análisis de Monte Carlo con PSpice	725
		11.9.2	Análisis de Monte Carlo desde OrCAD Capture	727
		11.9.3	Análisis del Peor Caso	731
			Análisis para optimización	731
			Prueba de humo	737
	11.10)Resum	en	738
	11.11	l Ejercic	ios de autoevaluación	739
			lades	746
	11.13	3 Ejercic	ios propuestos	750
12			os, competencias prácticas y experimentación remota	755
			acción, orientaciones para el estudio y objetivos	
			as clave	757
	12.3		ttorios, competencias prácticas y experimentación remota	757
		12.3.1	Tipos de laboratorios	758
		12.3.2	Ventajas e inconvenientes de los laboratorios	760
		12.3.3	Arquitectura de los laboratorios remotos	763
		12.3.4	Educación y Laboratorios	769

		12.3.5 Estándares	774
		12.3.6 Práctica 0 en VISIR	774
	12.4	Resumen	790
		Ejercicios de autoevaluación	790
		Actividades	794
		Ejercicios propuestos	799
13	Labo	oratorios remotos de componentes electrónicos digitales	801
	13.1	Introducción, orientaciones para el estudio y objetivos	803
	13.2	Palabras clave	803
		Servidores web	803
		13.3.1 Tornado	804
		13.3.2 Flask	805
		13.3.3 Arduino IoT Cloud	805
	13.4	Dispositivos, sensores y actuadores	806
		13.4.1 Dispositivos de procesamiento, Raspberry Pi	806
		13.4.2 Dispositivos de procesamiento, Arduino	816
		13.4.3 Sensores y actuadores	823
	13.5	Ejemplos de aplicación	829
		13.5.1 Robot remoto de 4 ruedas basado en Arduino	829
		13.5.2 Robot humanoide remoto basado en lógica programable	830
		13.5.3 Laboratorio de experimentación con energía solar	831
		13.5.4 Otras ideas adicionales	832
	13.6	Resumen	832
	13.7	Ejercicios de autoevaluación	833
	13.8	Actividades	837
	13.9	Ejercicios propuestos	839
14	Labo	oratorios remotos de componentes electrónicos analógicos (VISIR)	y
		to nivel (VISIR/FPAA)	841
		Introducción, orientaciones para el estudio y objetivos	843
	14.2	Palabras clave	843
	14.3	Introducción general a los laboratorios remotos	843
	14.4	Laboratorios remotos dedicados a la electrónica analógica	845
		14.4.1 Laboratorio remoto de electrónica inmersivo eLab3D	847
		14.4.2 Laboratorio remoto para electricidad básica NetLab	850
		14.4.3 Laboratorio remoto para electrónica LaboREM	853
	14.5	Laboratorio remoto VISIR	856
		1451 Hardware	858

		14.5.2	Software	865
	14.6		ción del FPAA en VISIR	871
		_	Aplicación de reconfiguración	871
			Aplicación WEB	881
			Integración con VISIR	884
	14.7		en	891
			ios de autoevaluación	891
			lades	896
			ios propuestos	911
15	Fiab	ilidad y	testabilidad de componentes y sistemas	913
			acción, orientaciones para el estudio y objetivos	915
	15.2	Palabra	as clave	916
	15.3	Fiabilio	dad: concepto y términos fundamentales	916
	15.4		los y su medida	917
		15.4.1	Definición de fallo	917
			Definición de probabilidad de fallo	917
	15.5	Paráme	etros de medida de la fiabilidad	918
		15.5.1	Tasa de fallo	918
		15.5.2	Tiempo medio hasta el fallo	919
		15.5.3	Tiempo medio entre fallos	919
		15.5.4	Diferencias entre MTTF, MTBF y MTTR (tiempo medio para	
			reparar)	920
			ución de fallos	921
			de la fiabilidad en el modelo de tasa de fallo constante	923
	15.8	Fiabilio	dad de sistemas	924
		15.8.1	Sistemas en configuración serie	924
			Sistemas con configuración en paralelo	926
			Configuración serie-paralelo	930
	15.9	Ensayo	os de fiabilidad	932
	15.10)Previsi	ones sobre la fiabilidad	933
			lización y normas	933
	15.12	2Toleran	ncias	934
	15.13	3Definic	ciones relacionadas con la tolerancia	934
	15.14	Repres	entaciones gráficas	935
	15.15	Cálculo	o de tolerancias	937
			siones en las tolerancias	937
	15.17		ncia de sistemas	939
		15.17.1	Tolerancia resultante de un sistema serie	940

Bibliografía						9	97
Glosario Solucionario							71
							51
15.24Ejercicios propuestos			•	•	•	. 9	48
15.23 Actividades							
15.22 Ejercicios de autoevaluación						. 9	43
15.21Resumen						. 9	43
15.20Límites estadísticos de las tolerancias						. 9	42
15.19Calidad de tolerancia						. 9	41
15.18Tolerancias geométricas y microgeométricas						. 9	41

Capítulo 1

INTRODUCCIÓN AL DISEÑO ELECTRÓNICO ASISTIDO POR ORDENADOR. CICLO DE VIDA. DISEÑO, SIMULACIÓN, MONTAJE Y PRUEBAS

Esquema:

- 1. Introducción, orientaciones para el estudio y objetivos
- 2. Palabras clave
- 3. Proceso de simulación
- 4. El ciclo de vida
- 5. Resumen
- 6. Ejercicios de autoevaluación
- 7. Ejercicios propuestos

1.1. INTRODUCCIÓN, ORIENTACIONES PARA EL ESTUDIO Y OBJETI-VOS

En este tema se exponen los aspectos fundamentales de la simulación y el conexionado, introduciendo conceptos que posteriormente serán ampliados y tratados con más detalle en sucesivos temas del libro. Como segunda parte del tema, se muestra una visión de conjunto del ciclo de vida de creación, desarrollo y uso de circuitos eléctricos y electrónicos, desde la idea inicial al circuito en producción. Se trata de ubicar las herramientas y técnicas que se verán en el libro en cada una de las fases del ciclo de vida.

Los objetivos de este capítulo son plantear la base conceptual que permita al lector familiarizarse con los entornos de simulación de sistemas eléctricos y electrónicos. E identificar cada una de las fases del ciclo de vida y la relación de las distintas ideas, conceptos, herramientas y tecnologías recogidas en el libro con cada una de estas fases.

Este primer tema pretende introducir los conceptos básicos que permitan abordar con éxito los siguientes temas del libro, donde se tratará con mayor amplitud muchos de los conceptos recogidos a continuación.

1.2. PALABRAS CLAVE

CAD, CAE, CAEE, CAM, Captura de esquemas, Ciclo de vida, Circuito impreso, Compilación, Diseño electrónico, Elección de componentes, Fabricación, Montaje de circuitos, PCB, Pruebas, Simulación, Simulación de interferencias, Simulación térmica.

1.3. PROCESO DE SIMULACIÓN

En un entorno de diseño electrónico asistido por ordenador (CAEE, *Computer Aided Electronic Engineering*) se pueden distinguir las etapas que se indican a continuación:

- Captura de esquemas y elección de componentes.
- Compilación expansión.
- Simulación.
- Diseño del circuito impreso.
- Simulación térmica y de interferencias.

- Fabricación.
- Control de calidad.

En la Figura 1.1 se ha esquematizado, en un diagrama de flujo, las distintas etapas que anteriormente se han citado para el proceso de simulación en un entorno CAEE, para pasar a continuación a realizar una descripción detallada de cada una de ellas.

Figura 1.1. Proceso de simulación en un entorno CAEE

1.3.1. Captura de esquemas y elección de componentes

El esquema es el conjunto de componentes presentes en el circuito junto con las conexiones que los unen. La captura de esquemas es el procedimiento de importación de los componentes (*parts*) desde un fichero de librería y su interconexión para crear la topología deseada.

Este proceso de captura se suele realiza mediante un editor gráfico, que añade la interactividad para conseguir de forma rápida y atractiva la definición del circuito y sus características, aunque también se puede realizar dicha operación mediante la

realización de un fichero de texto (*netlist*) en el que se define cada componente, así como los nudos a los que conecta. Conviene tener en cuenta que la primera alternativa evita muchos de los problemas de conexionado que se producen con los editores de texto.

Existen editores de esquemas orientados hacia la delineación del esquema del circuito y su posterior transformación en una placa de circuito impreso (PCB, *Printed Circuit Board*) como OrCAD o CADSTAR que cuentan con programas que transforman dichos esquemas (conocidos como esquemáticos) en ficheros de datos (*netlist*) reconocibles por el programa de simulación, si bien, la mayoría de los programas de simulación actuales ya incluyen su propio editor de esquemas (PSpice, Micro-Cap, etc.).

1.3.2. Compilación – expansión

Este bloque de programas actúa como elemento intermedio entre la captura de esquemas y el simulador, adecuando los formatos de uno y otro sistema. De esta forma, una posible descripción jerárquica del circuito se convierte en una descripción plana que entiende el simulador. En esta fase también se suelen comprobar todas las conexiones del circuito buscando nodos desconectados y cortocircuitos.

1.3.3. Simulación

Este proceso, que es el más crítico, se debe realizar de forma interactiva entre el usuario (diseñador) y la herramienta de simulación.

En la herramienta de simulación, el usuario introduce los estímulos del circuito, estableciendo las condiciones iniciales y las bases de tiempo. Una vez realizada una simulación, y a la vista de los resultados, el diseñador debe contrastar los requerimientos del diseño con los resultados obtenidos, pudiendo realizarse los cambios necesarios para ir adecuándose a las especificaciones iniciales.

1.3.4. Diseño del circuito impreso

Partiendo del fichero *netlist* obtenido del esquema del circuito se pasa al trazado de la placa de circuito impreso o PCB. Este trazado se obtiene de forma muy sencilla mediante unas aplicaciones llamadas normalmente *AUTOROUTER*, que de forma automática emplazan los componentes y, posteriormente, colocan las pistas siguiendo alguna estrategia de optimización predefinida y que el usuario puede seleccionar de entre una serie de ellas. Es habitual que algunas pistas del diseño queden sin trazar,

siendo necesario en estos casos, realizar un trazado manual para dichas pistas mediante otra utilidad denominada *ROUTER*.

1.3.5. Simulación térmica y de interferencias

Tiene una gran relevancia la simulación del conjunto de los componentes y la placa de circuito impreso, para poder tener en cuenta las interacciones térmicas entre componentes que disipen mucho calor y sus adyacentes, entre los que emiten campos electromagnéticos que perturban otros componentes próximos o las interacciones entre pistas próximas del trazado de una placa. Estos factores son de gran importancia si se hace referencia a los circuitos realizados con Tecnología de Montaje Superficial (SMD, *Surface Mounted Devices*), donde la distancia entre pistas y entre componentes está minimizada, y especialmente a los circuitos de potencia donde se integran señales de control y de potencia en una misma placa.

1.3.6. Fabricación

Una vez finalizado el proceso de diseño y de depuración de un circuito, incluyendo la disposición física de los componentes y el trazado de las pistas en la placa de circuito impreso, existen utilidades que enlazan el CAD (Computer Aided Design) y el CAE (Computer Aided Engineering) con el CAM (Computer Aided Manufacturing), de manera que a partir de los ficheros de trazado generan códigos para su realización física mediante procesos más o menos automatizados de fabricación. Estos procesos de fabricación pueden ir desde la realización de la placa de circuito impreso hasta la inserción automática de los componentes.

1.3.7. Control de calidad

En el diseño puede haberse previsto la realización automática de ciertas pruebas para comprobar que el producto final funciona correctamente de acuerdo con las especificaciones iniciales. Para este cometido se pueden utilizar camas de puntas de prueba o pruebas digitales de tipo JTAG. Existen programas que se encargan de realizar estas pruebas de calidad y funcionalidad y que necesitan de los datos proporcionados en las simulaciones previas para ser efectivos.

1.3.8. Testabilidad

Un aspecto en el diseño de los circuitos integrados y de sistemas completos de gran importancia es la testabilidad, debido a que es uno de los factores de mayor coste en el desarrollo de estos.

Hasta ahora todos los tipos de simulación vistos han ido encaminados a comprobar que el circuito o sistema en cuestión es funcionalmente correcto, es decir, realiza la función para la cual se ha diseñado, pero no se ha mencionado los posibles fallos de fabricación y de su detección. La testabilidad es la facilidad con la que se puede verificar la correcta fabricación de un circuito o sistema funcionalmente bien diseñado, y que no debe confundirse con la depuración del circuito o sistema, que consiste en comprobar su funcionalidad.

Existen diversos parámetros para medir la testabilidad de un circuito, como, por ejemplo, la cobertura de fallos, la controlabilidad y la observabilidad de los nodos de un circuito.

Cuanto más avanzado esté el proceso de fabricación, más complejo (y, por consiguiente, más caro) es el test del circuito o sistema, por lo que cuanto antes se detecte el fallo de fabricación o montaje menos coste tendrá el producto final.

Además, el tiempo de test de un circuito o sistema encarece enormemente el mismo, con lo que cuanto más fácil y rápido resulte el test, menor será el coste.

Basándose en esta filosofía se introduce el concepto de Diseño para la Testabilidad o DFT (*Design For Testability*), que consiste en preparar el circuito desde las primeras etapas del diseño para que sea fácilmente testable. Una buena herramienta CAD de diseño y simulación de circuitos debe estar preparada para el DFT.

Además del DFT debe hacerse el test apropiado, de manera que sean detectables el máximo número de fallos posibles y que todos los circuitos defectuosos sean rechazados. En general para testear un circuito o sistema se les introducen unos valores a las entradas (vectores de test) y se comparan con los valores esperados.

Actualmente se disponen de herramientas de análisis de la testabilidad de un circuito (por ejemplo, cobertura de fallos, controlabilidad y observabilidad de los nodos de un circuito), de Generación Automática de Vectores de Test o ATPG (*Automatic Test Pattern Generation*), de evaluación de la calidad del test a realizar (mediante simuladores de fallos en los circuitos) y de síntesis de lógica necesaria para el test.

Los tipos de fallos que se pueden dar son muy variados (cortocircuitos, pistas abiertas, componentes erróneos, falta de componentes, componentes mal colocados, fallos de cableado, fallos digitales, fallos analógicos, etc.) y para cada uno de ellos existe un test distinto. Estadísticamente se elige el modelo de fallo que se da con mayor frecuencia y con el que se detecta mayor número de circuitos defectuosos, denominado *Stuck-at fault*.

Para la simulación de fallos en circuitos se han desarrollado diversos algoritmos de distintas características y aplicaciones, siendo los principales los que se citan a continuación:

- Simulación de fallos serie, que, si bien resultan sencillos y precisos, son ineficientes en circuitos grandes.
- Simuladores con vectores en paralelo, más rápidos, pero sólo válidos para lógica combinacional y para un determinado tipo de fallos.
- Simulación reductiva.
- Simulación concurrente.
- PPSFP (*Parallel Pattern Single Fault Propagation*), es igual al de simulación serie, pero simulando varios vectores de test en paralelo.

Una vez simulados los fallos y comprobando que el conjunto de vectores de test escogidos es el más apropiado para el circuito en cuestión se pasa esta información al fabricante para que realice el test como un paso más del proceso de fabricación, consiguiendo que todos los circuitos que pasen a la venta no contengan fallos.

1.4. EL CICLO DE VIDA

Una vez abordado las diferentes etapas en el diseño electrónico asistido por ordenador, la siguiente parte a tratar en este tema es el ciclo de vida de los circuitos eléctricos y electrónicos.

Por "ciclo de vida" se entiende, en el contexto del CAE, al ciclo que va desde que un cierto análisis de un problema lleva a un diseño de un circuito eléctrico o electrónico (CAEE), hasta que se tiene un circuito real montado y probado. El diseño inicial es el punto de entrada en este ciclo de vida, que condensa de manera esquemática muchos de los aspectos que se analizan en este libro. El ciclo de vida (Figura 1.2) se puede describir como compuesto de 3 fases:

- Fase de diseño, en la que se han de tener en cuenta todos los detalles de modelos y componentes, que permitan describir lo mejor posible el circuito.
- Fase de simulación, en la que mediante las herramientas seleccionadas se "experimenta" de manera simulada y se obtiene y verifica el comportamiento eléctrico y/o electrónico asociado con el diseño previo.

Figura 1.2. Esquema del ciclo de vida

■ Fase de montaje y pruebas, en la que se montan los circuitos ya simulados, creando los circuitos impresos, tarjetas de circuito impreso o PCB.

Siendo este capítulo una aproximación general, que trata de ubicar muchas de las tecnologías, ideas, etc., (descritas en el libro), en un esquema general, el resto del capítulo explora con más detalle cada una de estas tres fases.

1.4.1. La fase de diseño del ciclo de vida

Como se ha comentado previamente en este capítulo, a esta fase se llega (Figura 1.3) tras un análisis previo de un sistema real, que lleva a crear un modelo para tal sistema. Se pueden usar en esta fase herramientas informáticas de ayuda al diseño, CAD.

Las ventajas generales de iniciar tal diseño son:

- Que no exista una formulación matemática completa del problema.
- Que la simulación permita atacar el problema de manera más rápida e intuitiva que los métodos analíticos disponibles.
- Se desea observar el trayecto histórico simulado del proceso sobre un periodo, además de estimar ciertos parámetros.

En este análisis previo se tienen en cuenta una serie de variables fundamentales para el resto de las fases:

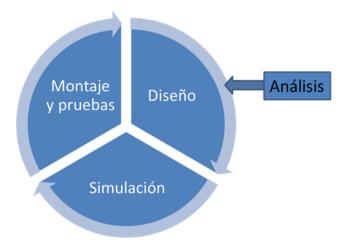


Figura 1.3. Entrada al ciclo de vida desde el análisis previo

- Si se deseará o no introducir variables para hacer una buena simulación térmica, en la que se tendrán en cuenta las interacciones térmicas entre componentes que disipen mucho calor y sus adyacentes.
- El diseño para la testabilidad, que consiste en preparar el diseño del circuito para que sea testeable y se pueda probar con facilidad.

1.4.2. La fase de simulación del ciclo de vida

En esta fase, y mediante el uso adecuado de las herramientas de simulación, se simula el circuito diseñado.

No se van a repetir en este capítulo todos los conceptos e informaciones ya analizadas previamente, relacionados con la simulación, como modelado, programas, esquemas, componentes, etc., pero si es importante señalar que tienen en esta fase su ubicación en el ciclo de vida. Si es importante recordar que este proceso es el más crítico y lo realiza el usuario interactivamente con la herramienta de simulación.

Mediante la herramienta seleccionada el usuario introducirá los estímulos del circuito, establecerá las condiciones iniciales y las bases de tiempo.

Al analizar los resultados obtenidos por la simulación, el diseñador debe contrastar los requerimientos del diseño con los resultados. Es posible que el resultado no sea el buscado y, en este caso, lo habitual es volver a la fase anterior para replantearse el diseño realizado, (Figura 1.4).