INDICE

CAPÍTULO 1: CARACTERÍSTICAS TÉCNICAS DE LOS VEHÍCULOS AUTOMÓVILES. BASTIDOR Y CARROCERÍA 1
1.1 INTRODUCCIÓN 1
1.2 CATEGORÍAS DE VEHÍCULOS 1
1.2.1 En función de la homologación 1
1.2.2 Tipologías 3
1.2.3 Clasificación de vehículos automóviles 4
1.2.4 Segmentos del automóvil 7
1.3 DIMENSIONADO Y SISTEMA DE REFERENCIA 8
1.4 CARACTERÍSTICAS TÉCNICAS DE LOS VEHÍCULOS 9
1.5 BASTIDOR Y CARROCERÍA 10
1.5.1 Según su construcción 11
1.5.2 Según número de volúmenes 15
1.5.3 Según la forma 16
1.5.4 Según el estilo de trasera 17
1.5.5 Según el estilo de techo 18
1.6 CHASIS DE MOTOCICLETAS 19
1.7 COEFICIENTE AERODINÁMICO 22
1.8 DETERMINACIÓN DEL CENTRO DE GRAVEDAD 28
1.8.1 Reparto de cargas 28
1.8.2 Cálculo del centro de gravedad 33
CAPÍTULO 2: NEUMATICOS 35
2.1 INTRODUCCION 35
2.2 CONSTITUCIÓN DEL NEUMATICO 36
2.2.1 Estructura de la cubierta 36
2.2.2 Configuración de la Banda de Rodadura y Flancos 37
2.2.3 Denominación de los neumáticos 38
2.3 ASPECTOS TRIBOLÓGICOS DEL CONTACTO ENTRE EL NEUMÁTICO Y LA SUPERFICIE DE RODADURA 39
2.3.1 Adhesión 40
2.3.2 Deformación 40
2.3.3 Desgaste y erosión 41
2.3.4 Fricción total 41
2.4 RESISTENCIA A LA RODADURA 41
2.4.1 Fuerza normal debida al peso 43
2.4.2 Rigidez radial 44
2.5 ESFUERZOS LONGITUDINALES: TRACCIÓN Y FRENADO 45
2.5.1 Esfuerzo de tracción 45
2.5.2 Esfuerzo de frenado 46
2.5.3 Coeficiente de adherencia: valor máximo y valor de deslizamiento puro 46
2.5.4 Cálculo de la fuerza longitudinal desarrollada en el contacto neumático- calzada 47
2.6 ESFUERZOS TRANSVERSALES 48
2.6.1 Variación de la fuerza transversal de contacto con el ángulo de deriva 50
2.7 ESFUERZOS COMBINADOS: COMPORTAMIENTO LATERAL DEL NEUMATICO 51
2.7.1 Comportamiento lateral del vehículo 52
2.8 ACUAPLANING O HIDROPLANEO 55
2.9 EQUILIBRADO DE NEUMÁTICOS 57
2.9.1 Equilibrado estático y dinámico 57
2.10 EFECTO SHIMMY 58
2.11 DEFECTOLOGÍA DE LOS NEUMÁTICOS 60
2.11.1 Influencia de la presión de inflado sobre el rendimiento de los neumáticos 60
2.11.2 Análisis de defectos 61
CAPÍTULO 3: DINAMICA LONGITUDINAL 65
3.1 INTRODUCCIÓN 65
3.2 RESISTENCIAS AL AVANCE 65
3.3 ECUACIÓN FUNDAMENTAL DEL MOVIMIENTO LONGITUDINAL 67
3.4 FUERZA TRANSMITIDA A LA CALZADA 68
3.5 DETERMINACIÓN DE LAS PRESTACIONES DE UN VEHÍCULO 70
3.5.1 Velocidad máxima 70
3.5.2 Rampa máxima 71
3.5.3 Aceleración máxima 72
3.6 DIAGRAMA DE TRACCIÓN 72
3.7 MEDICIÓN DE LAS CURVAS DE POTENCIA Y PAR 73
3.8 PROCESO DE FRENADO 76
3.9 CURVA DE EQUIADHERENCIA 76
3.10 RENDIMIENTO Y DISTANCIA DE FRENADO 80
3.11 MEDICIÓN DE LA FUERZA DE FRENADO 81
CAPÍTULO 4: EL SISTEMA DE TRANSMISION 85
4.1 INTRODUCCIÓN 85
4.2 EL EMBRAGUE 85
4.2.1 El embrague de fricción 86
4.2.2 El embrague hidrodinámico 89
4.2.3 El convertidor de par 92
4.3 LA CAJA DE CAMBIOS MECÁNICA 98
4.3.1 Componentes de una caja de cambios 99
4.3.2 Relación de transmisión 104
4.4 TREN EPICICLOIDAL 106
4.5 JUNTAS DE TRANSMISIÓN 110
4.5.1 Elementos básicos de una transmisión articulada 111
4.6 ÁRBOLES DE TRANSMISIÓN 115
4.6.1 Diseño de un árbol de transmisión 116
4.7 EL DIFERENCIAL 117
4.7.1 El diferencial libre 117
4.7.2 El diferencial de bloqueo manual 119
4.7.3 El diferencial Torsen 119
4.7.4 El diferencial viscoso 120
4.7.5 El diferencial basado en embrague Haldex 121
CAPÍTULO 5: EL SISTEMA DE DIRECCION 123
5.1 INTRODUCCIÓN 123
5.2 CAJAS DE DIRECCIÓN 124
5.2.1 Mecanismo de tornillo sin fin 125
5.2.2 Dirección de cremallera 131
5.2.3 Rótulas 131
5.3 REVERSIBILIDAD DE LA CONDUCCIÓN 132
5.4 DIRECCIÓN EN LAS CUATRO RUEDAS 134
5.4.1 Giro a baja velocidad 134
5.4.2 Giro a alta velocidad 135
5.5 ESFUERZOS EN LA MANGUETA 135
5.5.1 Fuerza vertical 135
5.5.2 Fuerza longitudinal 136
5.5.3 Fuerza transversal 137
5.6 ÁNGULOS DE DIRECCIÓN 137
5.6.1 Ángulo de caída 137
5.6.2 Ángulo de salida 139
5.6.3 Ángulo de avance 140
5.6.4 Ángulo de convergencia / divergencia 142
5.7 DIRECCIONES ASISTIDAS 143
5.8 GEOMETRÍA DE LA DIRECCIÓN 143
5.9 MANIOBRABILIDAD A BAJA VELOCIDAD DE UN SEMIRREMOLQUE 146
CAPÍTULO 6: EL SISTEMA DE FRENADO 151
6.1 INTRODUCCIÓN 151
6.2 FRENO DE TAMBOR 155
6.2.1 Introducción 155
6.2.2 Parámetros de diseño 157
6.3 FRENOS DE DISCO 165
6.3.1 Introducción 165
6.3.2 Parámetros de diseño 166
6.4 SENSIBILIDAD DE UN FRENO 172
6.5 FORROS Y PASTILLAS DE FRICCIÓN 173
6.6 COMPORTAMIENTO TÉRMICO DE LOS FRENOS DE TAMBOR Y DE DISCO 177
6.6.1 Consideraciones sobre la temperatura 177
6.6.2 Transferencia de calor en frenos de disco y en frenos de tambor 179
6.7 SISTEMA ANTIBLOQUEO DE FRENOS (ABS) 184
6.7.1 Introducción 184
6.7.2 Componentes 185
6.7.3 Ciclos de Regulación 187
CAPÍTULO 7: EL SISTEMA DE SUSPENSION 193
7.1 INTRODUCCION 193
7.2 COMPORTAMIENTO OSCILATORIO DEL VEHÍCULO 194
7.3 COMPORTAMIENTO VERTICAL DE LA SUSPENSIÓN 195
7.3.1 Modelo de un grado de libertad 195
7.3.2 Predimensionamiento de las constantes elásticas y de amortiguamiento para un modelo de 1 grado de libertad 197
7.3.3 Aplicación del modelo de un cuarto de vehículo 198
7.4 COMPONENTES DEL SISTEMA DE SUSPENSIÓN 199
7.4.1 Elementos elásticos 199
7.4.2 Resortes de ballestas 199
7.4.3 Resortes helicoidales 202
7.4.4 Resortes elastoméricos 203
7.4.5 Barra de torsión 203
7.4.6 Barra estabilizadora 204
7.4.7 Amortiguadores 206
7.4.8 Elementos de las suspensiones neumáticas 209
7.5 SISTEMAS DE SUSPENSIÓN 217
7.6 EJE DE BALANCEO 220
7.6.1 Introducción a la determinación del centro de balanceo 220
7.6.2 Determinación del centro de balanceo en sistemas de doble triángulo superpuesto 220
7.6.3 Determinación del centro de balanceo en sistemas McPherson 221
7.6.4 Rigidez al balanceo 221
CAPÍTULO 8: INFRAESTRUCTURA Y SUPERESTRUCTURA FERROVIARIAS 227
8.1 LA VIA FERROVIARIA 227
8.2 INFRAESTRUCTURA 228
8.2.1 Obras de fábrica 228
8.2.2 Trazado 229
8.3 SUPERESTRUCTURA 236
8.3.1 Vía 236
8.3.2 Aparatos de vía 236
8.3.3 Cambios de agujas 237
8.3.4 Señales 238
8.3.5 Electrificación 242
8.4 ENCLAVES FERROVIARIOS 245
8.4.1 Estación 245
8.4.2 Apartadero 245
8.4.3 Apeadero 246
8.4.4 Cargadero 246
8.4.5 Terminales de mercancías 246
8.4.6 Enclavamiento 246
CAPÍTULO 9: LA VÍA Y SUS ELEMENTOS 249
9.1 LA VIA 249
9.2 LA PLATAFORMA 250
9.3 LAS CAPAS DE ASIENTO 252
9.3.1 Balasto 252
9.3.2 Capas de subbase 254
9.3.3 Tipos de vía atendiendo a la naturaleza de la capa de asiento 255
9.4 EL CARRIL 257
9.4.1 Partes del carril 259
9.5 LAS TRAVIESAS 260
9.5.1 Sujeción de las traviesas 263
9.6 ESTUDIO MECÁNICO DE LA VÍA 264
9.6.1 Solicitaciones mecánicas 265
9.6.2 Caracterización elástica de la vía 273
CAPÍTULO 10: MATERIAL RODANTE. 279
10.1 MATERIAL RODANTE FERROVIARIO 279
10.1.1 Locomotoras 280
10.1.2 Coches y vagones 283
10.2 BOGIES 286
10.2.1 Bogie motor 287
10.2.2 Bogies remolques 292
10.3 RUEDAS 292
10.3.1 Centro de la rueda 293
10.3.2 Llanta 294
10.4 EJES 294
10.4.1 Ejes montados 295
10.5 CAJAS DE GRASA 295
10.6 PLACAS DE GUARDA 296
10.7 SUSPENSIÓN 297
10.7.1 Elementos de suspensión 297
10.7.2 Suspensiones ferroviarias 298
10.8 BASCULACIÓN FERROVIARIA 302
10.8.1 Confort 303
10.8.2 Sistemas pendulares 303
10.9 LIMITACIONES DE LOS SISTEMAS DE PENDULACIÓN 306
CAPÍTULO 11: CONTACTO RUEDA CARRIL 311
11.1 CONTACTO RUEDA-CARRIL 311
11.2 MODELOS DE CONTACTO RUEDA-CARRIL 311
11.2.1 Concepto de pseudo-deslizamiento 313
11.2.2 Problema normal. Teoría de Hertz 313
11.2.3 Problema tangencial 317
11.3 ADHERENCIA 320
11.3.1 Evolución del control del patinaje 320
11.3.2 Valores de adherencia 321
CAPÍTULO 12: RESISTENCIA AL MOVIMIENTO DE UN TREN 325
12.1 RESISTENCIAS AL AVANCE 325
12.2 RESISTENCIA AL AVANCE EN RECTA 325
12.2.1 Resistencias mecánicas al avance 326
12.2.2 Resistencias debido a la inclinación del terreno 328
12.2.3 Resistencia al avance debida a la entrada de aire en el habitáculo del tren 329
12.2.4 Resistencia aerodinámica 330
12.2.5 Valores de la resistencia al avance en recta a cielo abierto y sin viento 331
12.2.6 Resistencia total al avance en recta 333
12.3 RESISTENCIA AL AVANCE EN CIRCULACIÓN EN CURVA 333
12.3.1 Resistencia debida a los ejes montados 333
12.3.2 Resistencia debida al paralelismo de los ejes 334
12.3.3 Valor de la resistencia total al avance en la curva 334
12.3.4 Peso relativo de la resistencia en la curva 335
12.4 RESISTENCIA TOTAL AL AVANCE 335
12.4.1 Consideración conjunta de la resistencia al avance de la curva y la rampa 336
12.5 RESISTENCIA DE INERCIA 337
CAPÍTULO 13: CIRCULACIÓN EN RECTA 339
13.1 INTRODUCCIÓN 339
13.2 ESFUERZO TRACTOR 339
13.2.1 Velocidad crítica 341
13.2.2 Velocidad de régimen 341
13.2.3 Potencias en la locomotora 341
13.3 ESFUERZO DE FRENADA 344
13.3.1 Condiciones de aplicación del freno 344
13.3.2 Teoría general del frenado en llanta 345
13.3.3 Peso-freno y coeficiente de frenado instantáneos 347
13.3.4 Peso-freno y coeficiente de frenado 348
13.3.5 Distancia de parada 349
13.4 EXPRESIÓN SIMPLE DE LA ECUACIÓN DEL MOVIMIENTO 351
13.4.1 El efecto de la inercia de las masas giratorias 352
13.4.2 Expresión completa de la ecuación del movimiento del tren 353
13.5 DINÁMICA DEL TREN EN PENDIENTES Y RAMPAS 354
13.5.1 Dinámica del tren en rampas 354
13.5.2 Dinámica del tren en pendientes 355
13.5.3 Consideración conjunta de la pendiente y la rampa 357
13.6 REPRESENTACIÓN GRÁFICA DE LOS ESFUERZOS DE TRACCIÓN, FRENO Y RESISTENCIAS 358
13.7 CARGA MÁXIMA DE UN TREN. 359
13.7.1 Masa máxima de un tren para su circulación correcta 360
13.7.2 Determinación práctica de la carga máxima remolcable por una locomotora 363
13.8 MOVIMIENTO DE LAZO 365
CAPÍTULO 14: CIRCULACIÓN EN CURVA 371
14.1 PERALTE TEÓRICO Y REAL 371
14.1.1 Peralte teórico exacto y aproximado 373
14.1.2 Peralte práctico, peralte real 374
14.1.3 Insuficiencia de peralte. 375
14.1.4 Exceso de peralte 376
14.1.5 Peralte máximo 376
14.1.6 Limitaciones de peralte 377
14.2 FUERZAS TRANSVERSALES EN LA VÍA 380
14.3 CÁLCULO DEL DESPLAZAMIENTO TRANSVERSAL DEL VEHÍCULO FERROVIARIO 382
14.3.1 El eje en curva 382
14.3.2 El bogie en curva 386
14.4 ESFUERZOS ENTRE LAS RUEDAS Y LA VÍA 389
CAPÍTULO 15: CATENARIA FERROVIARIA 393
15.1 ALGUNOS ASPECTOS SOBRE LA INSTALACION ELECTRICA FERROVIARIA 393
15.2 DISEÑO DE UNA CATENARIA FLEXIBLE 403
15.3 PANTÓGRAFO 413
15.4 DESCENTRAMIENTO DE LA CATENARIA 416
BIBLIOGRAFÍA. 419

11.2.3.2 Teoría lineal de Kalker

En 1967 Kalker desarrolló una teoría en la que consideraba que la relación entre las fuerzas de contacto tangenciales y los pseudo-deslizamientos era lineal. Las relaciones lineales que establece para las fuerzas de contacto son:

$$
\begin{align*}
& F_{x}=-f_{33} \cdot \xi_{x} \\
& F_{y}=-f_{11} \cdot \xi_{y}-f_{12} \cdot \psi \tag{11.14}\\
& M_{z}=f_{12} \cdot \xi_{y}-f_{22} \cdot \psi
\end{align*}
$$

donde:

- $\quad F_{x}$ es la fuerza debida al pseudo-deslizamiento longitudinal.
- F_{y} es la fuerza debida al pseudo-deslizamiento lateral.
- M_{z} es el momento debido al pseudo-deslizamiento de giro.
- ξ_{x} es el pseudo-deslizamiento longitudinal.
- ξ_{y} es el pseudo-deslizamiento lateral.
- ψ es el pseudo-deslizamiento de giro.
- f_{11}, f_{12}, f_{22} y f_{33} son los coeficientes de pseudo-deslizamiento definidos por Kalker como:

$$
\begin{aligned}
\mathrm{f}_{11} & =(\mathrm{a} \cdot \mathrm{~b}) \cdot \mathrm{G} \cdot \mathrm{C}_{22} \\
\mathrm{f}_{12} & =(\mathrm{a} \cdot \mathrm{~b})^{3 / 2} \cdot G \cdot C_{23} \\
\mathrm{f}_{22} & =(\mathrm{a} \cdot \mathrm{~b})^{2} \cdot \mathrm{G} \cdot \mathrm{C}_{33} \\
\mathrm{f}_{33} & =(\mathrm{a} \cdot \mathrm{~b}) \cdot \mathrm{G} \cdot \mathrm{C}_{11}
\end{aligned}
$$

siendo:

- Ges el módulo de rigidez combinado para los materiales de la rueda y el carril:

$$
\begin{equation*}
\mathrm{G}=\frac{2 \cdot \mathrm{G}_{\mathrm{w}} \cdot \mathrm{G}_{\mathrm{R}}}{\mathrm{G}_{\mathrm{w}}+\mathrm{G}_{\mathrm{R}}} \tag{11.15}
\end{equation*}
$$

- C_{11}, C_{22}, C_{23} y C_{33} son los coeficientes de deslizamiento y de giro cuyos valores están tabulados (Tabla 11.1) y dependen únicamente del módulo de rigidez (G) y del coeficiente de Poisson (v) combinados para los materiales de la rueda y el carril:

$$
\begin{equation*}
v=\frac{\mathrm{G} \cdot\left(\mathrm{G}_{\mathrm{w}} \cdot \mathrm{v}_{\mathrm{R}}+\mathrm{G}_{\mathrm{R}} \cdot \mathrm{v}_{\mathrm{w}}\right)}{2 \cdot \mathrm{G}_{\mathrm{w}} \cdot \mathrm{G}_{\mathrm{R}}} \tag{11.16}
\end{equation*}
$$

- $G_{w} y G_{R}$ son los módulos de rigidez de los materiales de la rueda y el carril, respectivamente.
- $\quad v_{w} y v_{R}$ son los coeficientes de Poisson de los materiales de la rueda y el carril, respectivamente.

La teoría lineal de Kalker sólo es válida cuando los pseudo-deslizamientos longitudinal, lateral y de giro son muy pequeños. Cuando esto ocurre, la zona de deslizamiento dentro de la zona de contacto es muy pequeña y se puede suponer que el área de adhesión cubre toda la zona de contacto.

Para considerar el caso de pseudo-deslizamientos grandes, Kalker desarrolló la Teoría Exacta y lo implementó en el programa denominado CONTACT. El problema de esta teoría es que requiere mucho coste computacional. Por esta razón, Kalker desarrolló otra teoría, denominada Teoría Simplificada, y la implementó en otro programa denominado FASTSIM, que es mucho más rápido pero que comete unos errores del $10-15 \%$ con respecto al programa CONTACT.

Tabla 11.1: Valores de los coeficientes de deslizamiento y giro

	C_{11}			C_{22}			$C_{23}=-C_{32}$			C_{33}		
g	$\sigma=0$	1/4	1/2	$\sigma=0$	$1 / 4$	1/2	$\sigma=0$	1/4	1/2	$\sigma=0$	$1 / 4$	1/2
(a/b)												
0,1	2,51	3,31	4,85	2,51	2,52	2,53	0,334	0,473	0,731	6,42	8,28	11,7
0,2	2,59	3,37	4,81	2,59	2,63	2,66	0,483	0,603	0,809	3,46	4,27	5,66
0,3	2,68	3,44	4,80	2,68	2,75	2,81	0,607	0,715	0,889	2,49	2,96	3,72
0.4	2,78	3,53	4,82	2,78	2,88	2,98	0,720	0,823	0,977	2,02	2,32	2,77
0,5	2,88	3,62	4,83	2,88	3,01	3,14	0,82	0,929	1,07	1,74	1,93	2,22
0,6	2,98	3,72	4,91	2,98	3,14	3,31	0,930	1,03	1,18	1,56	1,68	1,86
0.7	3,09	3,81	4,97	3,09	3,28	3,48	1,03	1,14	1,29	1,43	1,50	1,60
0,8	3,19	3,91	5,05	3,19	3,41	3,65	1,13	1,25	1,40	1,34	1,37	1,42
0,9	3,29	4,01	5,12	3,29	3,54	3,82	1,23	1,36	1,51	1,27	1,27	1,27
(b/a)												
1,0	3,40	4,12	5,20	3,40	3,67	3,98	1,33	1,47	1,63	1,21	1,19	1,16
0,9	3,51	4,22	5,30	3,51	3,81	4,16	1,44	1,59	1,77	1,16	1,11	1,06
0,8	3,65	4,36	5,42	3,65	3,99	4,39	1,58	1,75	1,94	1,10	1,04	0,954
0,7	3,82	4,54	5,58	3,82	4,21	4,67	1,76	1,95	2,18	1,05	0,965	0,852
0,6	4,06	4,78	5,80	4,06	4,50	5,04	2.01	2,23	2,50	1,01	0,82	0,751
0,5	4,37	5,10	6,11	4,37	4,90	5,56	2,35	2,62	2,96	0,985	0,819	0,650
0,4	4,84	5,57	6,57	4,84	5,48	6,31	2,88	3,24	3,70	0,912	0,747	0549
0,3	5,57	6,34	7,34	5,57	6,40	7,51	3,79	4,32	5,01	0,868	0,674	0,446
0,2	6,96	7,78	8,82	6,96	8,14	9,79	5,72	6,63	7,89	0,828	0,601	0,341
0,1	10,7	11,7	12,9	10,7	12,8	16,0	12,2	14,6	18,0	0,795	0,526	0,228

11.2.3.3 Teoría simplificada de Kalker

La teoría simplificada de Kalker se puede utilizar en el caso de que se tenga un contacto que se pueda aproximar por el modelo de Hertz y en el que los cuerpos que están en contacto sean casi-idénticos. Esta teoría tiene en cuenta la influencia del pseudo-deslizamiento longitudinal, lateral y de giro. Dado que considera que los cuerpos son casi idénticos, se divide el problema en dos: los esfuerzos normales, los resuelve empleando la teoría de Hertz y los tangenciales los resuelve empleando su teoría simplificada.

Para desarrollar la teoría simplificada, Kalker consideró que la rueda y el carril eran dos cuerpos rígidos. Modelizó la superficie de contacto entre ellos como un conjunto de muelles situados en puntos discretos de las superficies, y supuso que la superficie de desplazamiento era un único punto que dependía sólo de la tracción en su superficie. Las fuerzas debidas a los pseudo-deslizamientos que son obtenidas con esta teoría son:

$$
\begin{align*}
& F_{x}=-\frac{8 \cdot a^{2} \cdot b}{3 \cdot L} \cdot \xi_{x} \\
& F_{y}=-\frac{8 \cdot a^{2} \cdot b}{3 \cdot L} \cdot \xi_{y}-\frac{\pi \cdot a^{3} \cdot b}{4 \cdot L} \cdot \psi \tag{11.17}
\end{align*}
$$

11.3 ADHERENCIA

Como ya es sabido, cuando el par motor en llanta es muy alto y superior al par resistente, la rueda desliza sobre el carril. La adherencia de la rueda sobre el carril es mayor cuanto más lo sea la masa que gravita sobre la rueda motriz, que se denomina masa adherente. Existe un cierto límite del par motor (y correlativamente del esfuerzo de tracción) a partir del cual la rueda desliza (patina); este esfuerzo de tracción es una fracción de la masa adherente ($m_{a d}$):

$$
\begin{equation*}
\mathrm{E}_{\mathrm{t} \max }=m_{a d} \cdot g \cdot \mu \tag{11.18}
\end{equation*}
$$

donde μ es el coeficiente de adherencia ($\mu<1$).
La adherencia se expresa en tanto por uno. Así, por ejemplo, si la masa que gravita sobre un eje motor de una locomotora es de 20 ty si el coeficiente de adherencia es de 0,25 , dicho eje sólo puede transmitir una fuerza horizontal de $20.000 \times 0,25=5.000$ daN, sea cual fuere la potencia del motor.

En el frenado, de forma análoga, la adherencia es el cociente entre la fuerza que gravita sobre un eje que frena y la fuerza horizontal de frenado que puede transmitir dicho eje. Se concluye que el coeficiente de adherencia es la medida de la efectividad con que un vehículo puede emplear su peso a la tracción o al freno, sin que las ruedas patinen.

Respecto a las condiciones de la locomotora que favorecen el aumento de la adherencia están: las barras de tracción bajas, buena suspensión, los equipos electrónicos de control de tracción (chopper y más aún tracción trifásica). Las condiciones de la vía que permiten obtener una elevada adherencia son el buen estado de la misma en cuanto a nivelación, carril soldado y, sobre todo, el estado superficial del carril. El carril sucio disminuye notablemente la adherencia. En este último caso, se puede aumentar la adherencia mediante el uso de arena.

En el caso de frenado, dado que todos los vehículos del tren disponen de sistema de frenos, la masa adherente en freno es mucho más alta que en tracción.

11.3.1 Evolución del control del patinaje

Las máquinas de vapor primitivas, no disponían de sistemas de control y de mejora de la adherencia. Cuando el tren patinaba, el maquinista cortaba la tracción para evitar el patinaje. Al principio, se controlaba el deslizamiento instalando una luz en cabina que avisaba al conductor, que dejaba caer arena sobre el carril. Posteriormente, el control automático de la adherencia, cortaba la potencia cuando se detectaba deslizamiento. Este sistema permitió aumentar la adherencia al 16% ó 20%.

