INDICE

CAPÍTULO 1	: CARACTERÍSTICAS TÉCNICAS DE LOS VEHÍCULOS AUTOMÓVILES. BASTIDOR Y CARROCERÍA1
1.1 IN	RODUCCIÓN 1
1.2 CA	TEGORÍAS DE VEHÍCULOS 1
1.2.1	En función de la homologación1
1.2.2	Tipologías 3
1.2.3	Clasificación de vehículos automóviles 4
1.2.4	Segmentos del automóvil
1.3 DII	VIENSIONADO Y SISTEMA DE REFERENCIA 8
1.4 CA	RACTERÍSTICAS TÉCNICAS DE LOS VEHÍCULOS9
1.5 BA	STIDOR Y CARROCERÍA 10
1.5.1	Según su construcción11
1.5.2	Según número de volúmenes 15
1.5.3	Según la forma
1.5.4	Según el estilo de trasera17
1.5.5	Según el estilo de techo
1.6 CH	ASIS DE MOTOCICLETAS 19
1.7 CO	EFICIENTE AERODINÁMICO 22
1.8 DE	TERMINACIÓN DEL CENTRO DE GRAVEDAD 28
1.8.1	Reparto de cargas
1.8.2	Cálculo del centro de gravedad 33

CAPÍT	ULO 2	: NEUMATICOS
2.1	. IN	TRODUCCION
2.2	2 CC	DNSTITUCIÓN DEL NEUMATICO
	2.2.1	Estructura de la cubierta
	2.2.2	Configuración de la Banda de Rodadura y Flancos
	2.2.3	Denominación de los neumáticos
2.3		PECTOS TRIBOLÓGICOS DEL CONTACTO ENTRE EL NEUMÁTICO Y LA SUPERFICIE DE DDADURA
	2.3.1	Adhesión 40
	2.3.2	Deformación 40
	2.3.3	Desgaste y erosión
	2.3.4	Fricción total
2.4	RE	SISTENCIA A LA RODADURA
	2.4.1	Fuerza normal debida al peso 43
	2.4.2	Rigidez radial
2.5	5 ES	FUERZOS LONGITUDINALES: TRACCIÓN Y FRENADO
	2.5.1	Esfuerzo de tracción
	2.5.2	Esfuerzo de frenado 46
	2.5.3	Coeficiente de adherencia: valor máximo y valor de deslizamiento puro 46
	2.5.4	Cálculo de la fuerza longitudinal desarrollada en el contacto neumático- calzada
2.6	5 ES	FUERZOS TRANSVERSALES
	2.6.1	Variación de la fuerza transversal de contacto con el ángulo de deriva 50
2.7	' ES	FUERZOS COMBINADOS: COMPORTAMIENTO LATERAL DEL NEUMATICO51
	2.7.1	Comportamiento lateral del vehículo 52
2.8	8 A(CUAPLANING O HIDROPLANEO
2.9) EC	QUILIBRADO DE NEUMÁTICOS
	2.9.1	Equilibrado estático y dinámico57
2.1	.0 EF	ECTO SHIMMY
2.1	.1 DI	FECTOLOGÍA DE LOS NEUMÁTICOS60
	2.11.	1 Influencia de la presión de inflado sobre el rendimiento de los neumáticos 60
	2.11.	2 Análisis de defectos
CAPÍT	ULO 3	: DINAMICA LONGITUDINAL65
3.1	. IN	TRODUCCIÓN

	3.2	RESI	ISTENCIAS AL AVANCE	65
	3.3	ECU	ACIÓN FUNDAMENTAL DEL MOVIMIENTO LONGITUDINAL	67
	3.4	FUE	RZA TRANSMITIDA A LA CALZADA	68
	3.5	DET	ERMINACIÓN DE LAS PRESTACIONES DE UN VEHÍCULO	70
	3.	5.1	Velocidad máxima	70
	3.	5.2	Rampa máxima	71
	3.	5.3	Aceleración máxima	72
	3.6	DIA	GRAMA DE TRACCIÓN	72
	3.7	ME	DICIÓN DE LAS CURVAS DE POTENCIA Y PAR	73
	3.8	PRO	CESO DE FRENADO	76
	3.9	CUR	VA DE EQUIADHERENCIA	76
	3.10	REN	DIMIENTO Y DISTANCIA DE FRENADO	80
	3.11	ME	DICIÓN DE LA FUERZA DE FRENADO	81
CA	PÍTUL	0 4:	EL SISTEMA DE TRANSMISION	85
	4.1	INTE	RODUCCIÓN	85
	4.2	EL E	MBRAGUE	85
	4.	2.1	El embrague de fricción	86
	4.	2.2	El embrague hidrodinámico	89
	4.	2.3	El convertidor de par	92
	4.3	LA C	AJA DE CAMBIOS MECÁNICA	98
	4.	3.1	Componentes de una caja de cambios	99
	4.	3.2	Relación de transmisión 1	.04
	4.4	TRE	N EPICICLOIDAL 1	.06
	4.5	JUN	TAS DE TRANSMISIÓN 1	10
	4.	5.1	Elementos básicos de una transmisión articulada1	11
	4.6	ÁRB	OLES DE TRANSMISIÓN 1	15
	4.	6.1	Diseño de un árbol de transmisión1	16
	4.7	EL D	IFERENCIAL 1	.17
	4.	7.1	El diferencial libre	17
	4.	7.2	El diferencial de bloqueo manual1	19
	4.	7.3	El diferencial Torsen 1	19
	4.	7.4	El diferencial viscoso 1	20
	4.	7.5	El diferencial basado en embrague Haldex1	.21

CAPÍT	CAPÍTULO 5: EL SISTEMA DE DIRECCION 123				
5.1	1	INTF	RODUCCIÓN	123	
5.2	2	CAJA	AS DE DIRECCIÓN	124	
	5.2	.1	Mecanismo de tornillo sin fin	125	
	5.2	.2	Dirección de cremallera	131	
	5.2	.3	Rótulas	131	
5.3	3	REV	ERSIBILIDAD DE LA CONDUCCIÓN	132	
5.4	1	DIRE	ECCIÓN EN LAS CUATRO RUEDAS	134	
	5.4	.1	Giro a baja velocidad	134	
	5.4	.2	Giro a alta velocidad	135	
5.5	5	ESFL	JERZOS EN LA MANGUETA	135	
	5.5	.1	Fuerza vertical	135	
	5.5	.2	Fuerza longitudinal	136	
	5.5	.3	Fuerza transversal	137	
5.6	5	ÁNG	GULOS DE DIRECCIÓN	137	
	5.6	.1	Ángulo de caída	137	
	5.6	.2	Ángulo de salida	139	
	5.6	.3	Ángulo de avance	140	
	5.6	.4	Ángulo de convergencia / divergencia	142	
5.7	7	DIRE	ECCIONES ASISTIDAS	143	
5.8	3	GEO	METRÍA DE LA DIRECCIÓN	143	
5.9	Э	MAN	NIOBRABILIDAD A BAJA VELOCIDAD DE UN SEMIRREMOLQUE	146	
CAPÍT	ULC	D 6: I	EL SISTEMA DE FRENADO	151	
6.2	1	INTF	RODUCCIÓN	151	
6.2	2	FRE	NO DE TAMBOR	155	
	6.2	.1	Introducción	155	
	6.2	.2	Parámetros de diseño	157	
6.3	3	FRE	NOS DE DISCO	165	
	6.3	.1	Introducción	165	
	6.3	.2	Parámetros de diseño	166	
6.4	4	SEN	SIBILIDAD DE UN FRENO	172	
6.5	5	FOR	ROS Y PASTILLAS DE FRICCIÓN	173	
6.6	5	CON	IPORTAMIENTO TÉRMICO DE LOS FRENOS DE TAMBOR Y DE DISCO	177	
	6.6	.1	Consideraciones sobre la temperatura	177	

	6.6.2	Transferencia de calor en frenos de disco y en frenos de tambor 179
6.7	V SIST	EMA ANTIBLOQUEO DE FRENOS (ABS) 184
	6.7.1	Introducción
	6.7.2	Componentes
	6.7.3	Ciclos de Regulación
CAPÍT	ULO 7:	EL SISTEMA DE SUSPENSION193
7.1	L INTI	RODUCCION
7.2	2 CON	MPORTAMIENTO OSCILATORIO DEL VEHÍCULO 194
7.3	B CON	MPORTAMIENTO VERTICAL DE LA SUSPENSIÓN 195
	7.3.1	Modelo de un grado de libertad 195
	7.3.2	Predimensionamiento de las constantes elásticas y de amortiguamiento para un modelo de 1 grado de libertad 197
	7.3.3	Aplicación del modelo de un cuarto de vehículo198
7.4	CON	MPONENTES DEL SISTEMA DE SUSPENSIÓN199
	7.4.1	Elementos elásticos
	7.4.2	Resortes de ballestas 199
	7.4.3	Resortes helicoidales 202
	7.4.4	Resortes elastoméricos 203
	7.4.5	Barra de torsión 203
	7.4.6	Barra estabilizadora 204
	7.4.7	Amortiguadores
	7.4.8	Elementos de las suspensiones neumáticas 209
7.5	5 SIST	EMAS DE SUSPENSIÓN
7.6	5 EJE	DE BALANCEO 220
	7.6.1	Introducción a la determinación del centro de balanceo
	7.6.2	Determinación del centro de balanceo en sistemas de doble triángulo superpuesto
	7.6.3	Determinación del centro de balanceo en sistemas McPherson 221
	7.6.4	Rigidez al balanceo 221
CAPÍT	ULO 8:	INFRAESTRUCTURA Y SUPERESTRUCTURA FERROVIARIAS

8.1	LA ۱	/IA FERROVIARIA	227
8.2	INF	RAESTRUCTURA	228
8	8.2.1	Obras de fábrica	228

	8.2.2	Trazado	229
	8.3 SL	IPERESTRUCTURA	236
	8.3.1	Vía	236
	8.3.2	Aparatos de vía	236
	8.3.3	Cambios de agujas	237
	8.3.4	Señales	238
	8.3.5	Electrificación	242
	8.4 EN	ICLAVES FERROVIARIOS	245
	8.4.1	Estación	245
	8.4.2	Apartadero	245
	8.4.3	Apeadero	246
	8.4.4	Cargadero	
	8.4.5	Terminales de mercancías	246
	8.4.6	Enclavamiento	
CAI	PÍTULO 9): LA VÍA Y SUS ELEMENTOS	249
	9.1 LA	VIA	249
	9.2 LA	PLATAFORMA	250
	9.3 LA	S CAPAS DE ASIENTO	
	9.3.1	Balasto	
	9.3.2	p	
	9.3.3	Tipos de vía atendiendo a la naturaleza de la capa de asiento	
	9.4 EL	CARRIL	
	9.4.1		
	9.5 LA	S TRAVIESAS	
	9.5.1	·· , ····	
		TUDIO MECÁNICO DE LA VÍA	
	9.6.1	Solicitaciones mecánicas	
	9.6.2	Caracterización elástica de la vía	273
	,		
		0: MATERIAL RODANTE	
		ATERIAL RODANTE FERROVIARIO	
		1 Locomotoras	
		2 Coches y vagones	
	10.2 BC	DGIES	286

	10).2.1	Bogie motor	287
	10).2.2	Bogies remolques	292
	10.3	RUE	EDAS	292
	10	0.3.1	Centro de la rueda	293
	10).3.2	Llanta	294
	10.4	EJES	S	294
	10).4.1	Ejes montados	295
	10.5	CAJ	AS DE GRASA	295
	10.6	PLA	CAS DE GUARDA	296
	10.7	SUS	PENSIÓN	297
	10).7.1	Elementos de suspensión	297
	10).7.2	Suspensiones ferroviarias	298
	10.8	BAS	CULACIÓN FERROVIARIA	302
	10).8.1	Confort	303
	10).8.2	Sistemas pendulares	303
	10.9	LIM	IITACIONES DE LOS SISTEMAS DE PENDULACIÓN	306
21	ρίτιμ	0 11	: CONTACTO RUEDA CARRII	311

CAPÍTULO 11	L: CONTACTO RUEDA CARRIL	. 311
11.1 CO	NTACTO RUEDA-CARRIL	311
11.2 MC	DELOS DE CONTACTO RUEDA-CARRIL	. 311
11.2.1	Concepto de pseudo-deslizamiento	313
11.2.2	Problema normal. Teoría de Hertz	313
11.2.3	Problema tangencial	317
11.3 AD	HERENCIA	320
11.3.1	Evolución del control del patinaje	320
11.3.2	Valores de adherencia	321

CAPÍTULO	12: RESISTENCIA AL MOVIMIENTO DE UN TREN	325
12.1 H	RESISTENCIAS AL AVANCE	325
12.2 F	RESISTENCIA AL AVANCE EN RECTA	325
12.2	2.1 Resistencias mecánicas al avance	326
12.2	2.2 Resistencias debido a la inclinación del terreno	328
12.2	2.3 Resistencia al avance debida a la entrada de aire en el habitáculo del tren	329
12.2	2.4 Resistencia aerodinámica	330
12.2	2.5 Valores de la resistencia al avance en recta a cielo abierto y sin viento	331

12.2	6 Resistencia total al avance en recta	333
12.3 R	ESISTENCIA AL AVANCE EN CIRCULACIÓN EN CURVA	333
12.3	1 Resistencia debida a los ejes montados	333
12.3	2 Resistencia debida al paralelismo de los ejes	334
12.3	3 Valor de la resistencia total al avance en la curva	334
12.3	4 Peso relativo de la resistencia en la curva	335
12.4 R	ESISTENCIA TOTAL AL AVANCE	335
12.4	1 Consideración conjunta de la resistencia al avance de la curva y la rampa	336
12.5 R	ESISTENCIA DE INERCIA	337

CAPÍTULO 13: CIRCULACIÓN EN RECTA	
13.1 INTRODUCCIÓN	
13.2 ESFUERZO TRACTOR	
13.2.1 Velocidad crítica	
13.2.2 Velocidad de régimen	
13.2.3 Potencias en la locomotora	
13.3 ESFUERZO DE FRENADA	
13.3.1 Condiciones de aplicación del freno	
13.3.2 Teoría general del frenado en llanta	345
13.3.3 Peso-freno y coeficiente de frenado instantáneos	347
13.3.4 Peso-freno y coeficiente de frenado	
13.3.5 Distancia de parada	349
13.4 EXPRESIÓN SIMPLE DE LA ECUACIÓN DEL MOVIMIENTO	351
13.4.1 El efecto de la inercia de las masas giratorias	
13.4.2 Expresión completa de la ecuación del movimiento del tren	353
13.5 DINÁMICA DEL TREN EN PENDIENTES Y RAMPAS	354
13.5.1 Dinámica del tren en rampas	
13.5.2 Dinámica del tren en pendientes	
13.5.3 Consideración conjunta de la pendiente y la rampa	
13.6 REPRESENTACIÓN GRÁFICA DE LOS ESFUERZOS DE TRACC RESISTENCIAS	
13.7 CARGA MÁXIMA DE UN TREN	359
13.7.1 Masa máxima de un tren para su circulación correcta	
13.7.2 Determinación práctica de la carga máxima remolcable por una	locomotora . 363
13.8 MOVIMIENTO DE LAZO	

CAPÍTULO 14: CIRCULACIÓN EN CURVA
14.1 PERALTE TEÓRICO Y REAL
14.1.1 Peralte teórico exacto y aproximado
14.1.2 Peralte práctico, peralte real 374
14.1.3 Insuficiencia de peralte
14.1.4 Exceso de peralte
14.1.5 Peralte máximo
14.1.6 Limitaciones de peralte
14.2 FUERZAS TRANSVERSALES EN LA VÍA
14.3 CÁLCULO DEL DESPLAZAMIENTO TRANSVERSAL DEL VEHÍCULO FERROVIARIO 382
14.3.1 El eje en curva
14.3.2 El bogie en curva
14.4 ESFUERZOS ENTRE LAS RUEDAS Y LA VÍA
CAPÍTULO 15: CATENARIA FERROVIARIA
15.1 ALGUNOS ASPECTOS SOBRE LA INSTALACION ELECTRICA FERROVIARIA
15.2 DISEÑO DE UNA CATENARIA FLEXIBLE 403
15.3 PANTÓGRAFO 413
15.4 DESCENTRAMIENTO DE LA CATENARIA 416
BIBLIOGRAFÍA419

11.2.3.2 Teoría lineal de Kalker

En 1967 Kalker desarrolló una teoría en la que consideraba que la relación entre las fuerzas de contacto tangenciales y los pseudo-deslizamientos era lineal. Las relaciones lineales que establece para las fuerzas de contacto son:

$$F_{x} = -f_{33} \cdot \xi_{x}$$

$$F_{y} = -f_{11} \cdot \xi_{y} - f_{12} \cdot \psi$$

$$M_{z} = f_{12} \cdot \xi_{y} - f_{22} \cdot \psi$$
(11.14)

donde:

- *F_x* es la fuerza debida al pseudo-deslizamiento longitudinal.
- F_{y} es la fuerza debida al pseudo-deslizamiento lateral.
- *M_z* es el momento debido al pseudo-deslizamiento de giro.
- ξ_x es el pseudo-deslizamiento longitudinal.
- ξ_v es el pseudo-deslizamiento lateral.
- ψ es el pseudo-deslizamiento de giro.
- f_{11} , f_{12} , f_{22} y f_{33} son los coeficientes de pseudo-deslizamiento definidos por Kalker como:

$$\begin{split} f_{11} &= (a \cdot b) \cdot G \cdot C_{22} \\ f_{12} &= (a \cdot b)^{3/2} \cdot G \cdot C_{23} \\ f_{22} &= (a \cdot b)^2 \cdot G \cdot C_{33} \\ f_{33} &= (a \cdot b) \cdot G \cdot C_{11} \end{split}$$

siendo:

• G es el módulo de rigidez combinado para los materiales de la rueda y el carril:

$$G = \frac{2 \cdot G_{w} \cdot G_{R}}{G_{w} + G_{R}}$$
(11.15)

 C₁₁, C₂₂, C₂₃ y C₃₃ son los coeficientes de deslizamiento y de giro cuyos valores están tabulados (Tabla 11.1) y dependen únicamente del módulo de rigidez (G) y del coeficiente de Poisson (v) combinados para los materiales de la rueda y el carril:

$$\nu = \frac{G \cdot (G_{w} \cdot \nu_{R} + G_{R} \cdot \nu_{w})}{2 \cdot G_{w} \cdot G_{R}}$$
(11.16)

- G_w y G_R son los módulos de rigidez de los materiales de la rueda y el carril, respectivamente.
- $V_w y v_R$ son los coeficientes de Poisson de los materiales de la rueda y el carril, respectivamente.

La teoría lineal de Kalker sólo es válida cuando los pseudo-deslizamientos longitudinal, lateral y de giro son muy pequeños. Cuando esto ocurre, la zona de deslizamiento dentro de la zona de contacto es muy pequeña y se puede suponer que el área de adhesión cubre toda la zona de contacto.

Para considerar el caso de pseudo-deslizamientos grandes, Kalker desarrolló la *Teoría Exacta* y lo implementó en el programa denominado CONTACT. El problema de esta teoría es que requiere mucho coste computacional. Por esta razón, Kalker desarrolló otra teoría, denominada *Teoría Simplificada*, y la implementó en otro programa denominado FASTSIM, que es mucho más rápido pero que comete unos errores del 10-15% con respecto al programa CONTACT.

g	C11			C22			$C_{23} = -C_{32}$			C33		
	$\sigma = 0$	1/4	1/2	$\sigma = 0$	1/4	1/2	σ=0	1/4	1/2	$\sigma = 0$	1/4	1/2
(a/b)												
0,1	2,51	3,31	4,85	2,51	2,52	2,53	0,334	0,473	0,731	6,42	8,28	11,7
0,2	2,59	3,37	4,81	2,59	2,63	2,66	0,483	0,603	0,809	3,46	4,27	5,66
0,3	2,68	3,44	4,80	2,68	2,75	2,81	0,607	0,715	0,889	2,49	2,96	3,72
0,4	2,78	3,53	4,82	2,78	2,88	2,98	0,720	0,823	0,977	2,02	2,32	2,77
0,5	2,88	3,62	4,83	2,88	3,01	3,14	0,82	0,929	1,07	1,74	1,93	2,22
0,6	2,98	3,72	4,91	2,98	3,14	3,31	0,930	1,03	1,18	1,56	1,68	1,86
0,7	3,09	3,81	4,97	3,09	3,28	3,48	1,03	1,14	1,29	1,43	1,50	1,60
0,8	3,19	3,91	5,05	3,19	3,41	3,65	1,13	1,25	1,40	1,34	1,37	1,42
0.9	3,29	4.01	5,12	3,29	3,54	3,82	1,23	1,36	1,51	1,27	1,27	1,27
(b/a)												
1,0	3,40	4,12	5,20	3,40	3,67	3,98	1,33	1,47	1,63	1,21	1,19	1,16
0,9	3,51	4,22	5,30	3,51	3,81	4,16	1,44	1,59	1,77	1,16	1,11	1,06
0,8	3,65	4,36	5,42	3,65	3,99	4,39	1,58	1,75	1,94	1,10	1,04	0,954
0,7	3,82	4,54	5,58	3,82	4,21	4,67	1,76	1,95	2,18	1,05	0,965	0,852
0,6	4,06	4,78	5,80	4,06	4,50	5,04	2,01	2,23	2,50	1,01	0,82	0,75
0,5	4,37	5,10	6,11	4,37	4,90	5,56	2,35	2,62	2,96	0,985	0,819	0,650
	4,84	5,57	6,57	4,84	5,48	6,31	2,88	3,24	3,70	0,912	0,747	0549
0,4	7,07				e	7.61	3,79	4,32	5,01	0,868	0,674	
0,4	5,57	6,34	7,34	5,57	6,40	7,51	3,19	4,54	5,01	0,000	0,074	0,440
		6,34 7,78	7,34 8,82	5,57	6,40 8,14	9,79	5,79	6,63	7,89	0,808	0,601	0,44

Tabla 11.1: Valores de los coeficientes de deslizamiento y giro

11.2.3.3 Teoría simplificada de Kalker

La teoría simplificada de Kalker se puede utilizar en el caso de que se tenga un contacto que se pueda aproximar por el modelo de Hertz y en el que los cuerpos que están en contacto sean casi-idénticos. Esta teoría tiene en cuenta la influencia del pseudo-deslizamiento longitudinal, lateral y de giro. Dado que considera que los cuerpos son casi idénticos, se divide el problema en dos: los esfuerzos normales, los resuelve empleando la teoría de Hertz y los tangenciales los resuelve empleando su teoría simplificada.

Para desarrollar la teoría simplificada, Kalker consideró que la rueda y el carril eran dos cuerpos rígidos. Modelizó la superficie de contacto entre ellos como un conjunto de muelles situados en puntos discretos de las superficies, y supuso que la superficie de desplazamiento era un único punto que dependía sólo de la tracción en su superficie. Las fuerzas debidas a los pseudo-deslizamientos que son obtenidas con esta teoría son:

$$F_{x} = -\frac{8 \cdot a^{2} \cdot b}{3 \cdot L} \cdot \xi_{x}$$

$$F_{y} = -\frac{8 \cdot a^{2} \cdot b}{3 \cdot L} \cdot \xi_{y} - \frac{\pi \cdot a^{3} \cdot b}{4 \cdot L} \cdot \psi$$
(11.17)

11.3 ADHERENCIA

Como ya es sabido, cuando el par motor en llanta es muy alto y superior al par resistente, la rueda desliza sobre el carril. La adherencia de la rueda sobre el carril es mayor cuanto más lo sea la masa que gravita sobre la rueda motriz, que se denomina masa adherente. Existe un cierto límite del par motor (y correlativamente del esfuerzo de tracción) a partir del cual la rueda desliza (patina); este esfuerzo de tracción es una fracción de la masa adherente (m_{ad}):

$$\mathsf{E}_{\mathsf{tmax}} = m_{ad} \cdot g \cdot \mu \tag{11.18}$$

donde μ es el coeficiente de adherencia (μ <1).

La adherencia se expresa en tanto por uno. Así, por ejemplo, si la masa que gravita sobre un eje motor de una locomotora es de 20 t y si el coeficiente de adherencia es de 0,25, dicho eje sólo puede transmitir una fuerza horizontal de 20.000 x 0,25 = 5.000 daN, sea cual fuere la potencia del motor.

En el frenado, de forma análoga, la adherencia es el cociente entre la fuerza que gravita sobre un eje que frena y la fuerza horizontal de frenado que puede transmitir dicho eje. Se concluye que el coeficiente de adherencia es la medida de la efectividad con que un vehículo puede emplear su peso a la tracción o al freno, sin que las ruedas patinen.

Respecto a las condiciones de la locomotora que favorecen el aumento de la adherencia están: las barras de tracción bajas, buena suspensión, los equipos electrónicos de control de tracción (chopper y más aún tracción trifásica). Las condiciones de la vía que permiten obtener una elevada adherencia son el buen estado de la misma en cuanto a nivelación, carril soldado y, sobre todo, el estado superficial del carril. El carril sucio disminuye notablemente la adherencia. En este último caso, se puede aumentar la adherencia mediante el uso de arena.

En el caso de frenado, dado que todos los vehículos del tren disponen de sistema de frenos, la masa adherente en freno es mucho más alta que en tracción.

11.3.1 Evolución del control del patinaje

Las máquinas de vapor primitivas, no disponían de sistemas de control y de mejora de la adherencia. Cuando el tren patinaba, el maquinista cortaba la tracción para evitar el patinaje. Al principio, se controlaba el deslizamiento instalando una luz en cabina que avisaba al conductor, que dejaba caer arena sobre el carril. Posteriormente, el control automático de la adherencia, cortaba la potencia cuando se detectaba deslizamiento. Este sistema permitió aumentar la adherencia al 16% ó 20%.