A PARAMETRIC MODEL TO ESTIMATE RISKIN A
FIXED INCOME PORTFOLIO

Pilar Abad
Sonia Benito

FUNDACION DE LAS CAJAS DE AHORROS
DOCUMENTO DE TRABAJO
N° 300/2006




De conformidad con la base quinta de la convocatoria del Programa
de Estimulo a la Investigacién, este trabajo ha sido sometido a eva-
luacion externa andénima de especialistas cualificados a fin de con-

trastar su nivel técnico.

ISBN: 84-89116-07-5

La serie DOCUMENTOS DE TRABAJO incluye avances y resultados de investigaciones dentro de los pro-
gramas de la Fundacion de las Cajas de Ahorros.

Las opiniones son responsabilidad de los autores.




A Parametric Model to Estimate Risk in a
Fixed Income Portfolio”

Pilar Abad Sonia Benito
D. Econometria y Estadistica D. de Analisis Economico 11
Universitat de Barcelona Universidad Nacional de Educacion a
Diagonal, 690. Distancia
08034, Barcelona, Spain Senda del rey n° 11
(and Universidad de Vigo) 28040, Madrid, Spain
E-mail: pabad@uvigo.es E-mail: soniabm@cee.uned.es

Abstract: In this paper we propose a methodology that let us to calculate the variance and
covariance matrix of a very large set of interest rate changes at a very low computational
cost. The proposal uses the parametization of interest rates that underlies the model of
Nelson and Siegel (1987) to estimate the yield curve. Starting with that model, we are able
to obtain the variance-covariance matrix of a vector of k interest rates by estimating the
variance of the principal components of the four parameters of the model. We used the
methodology we propose to calculate risk in a fixed income portfolio, in particular to
calculate Value at Risk (VaR). The results of the paper indicate that the application of our
method to calculate VaR provides a precise measure of risk when compared to other
parametric methods.

JEL: E43, G11.
Keywords: Value at Risk, Market risk, Nelson and Siegel method.

" We are grateful to Alfonso Novales for helpful comments and suggestions. Financial
support from the Spanish Ministry of Education and Science and FEDER (SEJ2005-
03753/ECO) and National Plan of Scientific Research, Development and Technological
Innovation (BEC2003-03965) is acknowledged.



1. Introduction

One of the most important tasks facing financial institutions is the evaluation of the
degree to which they are exposed to market risk. This risk appears as a consequence of the
changes in the market prices of the assets that compose their portfolios. One way to measure
this risk is to evaluate the possible losses that can occur from changes in market prices. This
is precisely what the VaR (value at risk) methodology does. This methodology has been
very widely used recently, and it has become a basic tool for market risk management of
many investment banks, trading banks, financial institutions and some non-financial
corporations. Also, the Basel Committee on Banking Supervision (1996) at the Bank for
International Settlements uses VaR to require financial institutions such as banks and
investment firms to meet capital requirements to cover the market risk that they incur as a
result of their normal operations.

The VaR of a portfolio is a statistical measure that tells us what is the maximum
amount that an investor may lose over a given time horizon and with a given probability.
Alternatively, the VaR of a portfolio can be defined as the amount of funds that a financial
institution should have in order to cover the portfolio losses in almost all circumstances,
except for those that occur with a very low probability.

Although VaR is a simple concept, its calculation is not trivial. Formally, VaR
(%) is the percentil oo of the probability distribution of the changes in value of a
portfolio, that is, it is the value for which o % of the values lie to the left on the distribution.
Consequentially, in order to calculate VaR we must firstly estimate the probability
distribution of the changes in value of the portfolio.

Several methods have been developed to do this: Monte Carlo Simulation,
Historical Simulation, Parametric Models, and Stress Testing. See Jorion(2000) to get a
general vision of this methodologies. Among all of these, the most widely used methods are
those based on the parametric approach, or on variance and co-variance. We can see some
applications of this method in Morgan(1995), Garcia-Donato at all(2001) Gento(2001),
Gento(2000), Benito and Novales(2005), Alex NcMain(2001).

The parametric approach is based on the assumption that the changes in value of a
portfolio will follow a known distribution, which is generally assumed to be Normal. Under
such an assumption, the only relevant parameter for the calculation of VaR is the variance

conditional on the changes in value of the portfolio, assuming that on average these are zero.



The estimation of this variance is not trivial, since it requires estimating the variance co-
variance matrix of the assets that make up the portfolio.

The estimation of this matrix poses two types of problems: (1) a dimensionality
problem and (2) a viability problem. The first appears due to the large dimension of the
matrix, which makes it difficult to estimate. For example, in order to estimate the variance
of the return of a portfolio that is made up of five assets, it is necessary to estimate five
variances and fifteen covariances, that is a total of twenty variables. This problem becomes
especially important in fixed income portfolios in which the value depends on a large
number of different interest rates, for different time horizons. The second problem has to do
with the difficulty of estimating the conditional covariances if one uses sophisticated
models, such as multivariate GARCH models. The estimation of such models is both very
costly in terms of computation, and is also generally not even possible when the dimension
of the matrix is greater than three. It is for this reason that these models have not been at all
popular for financial management.

In the recent literature, these problems are tackled using the assumption that there
exist common factors in the volatility of the interest rates, and that these same factors
explain the changes in the temporal structure of the interest rates (TSIR). Under these two
assumptions, it becomes theoretically possible to obtain the variance-covariance matrix of a
wide range of interest rates using a factor model of TSIR. For example, Alexander (2001)
and Gento (2000) show that if we begin with a principal components model (Alexander
2001) or a regression model (Gento, 2000), then we can get the variance-covariance matrix
from a vector of interest rates at a low calculation cost.

The present paper proposes an alternative method of estimating the variance-
covariance matrix of interest rates at a low computational cost. We take as our starting point
the model of Nelson and Siegel (1987), which was developed initially to estimate the TSIR.
This model provides an expression of the interest rates as a function of four parameters.
Starting with this model, we can obtain the variance-covariance matrix of the interest rates
by calculating the variances of only four variables — the principal components of the
changes in the four parameters.

This paper continues as follows. In section 2 we present the method proposed to
estimate the variance-covariance matrix for a large vector of interest rates at a low
computational cost. The next sections evaluate the proposed method for a sample of data

from the Spanish market. In section 3 we briefly describe the data that we use, and we apply



the proposed method to obtain the variance-covariance matrix of a vector of interest rates. In
section 4 we evaluate the proposed methodology to calculate the VaR in fixed income
portfolios, and we compare the results with those that are obtained from standard methods

of calculation. Finally, section 5 presents the main conclusions of the paper.

2. A parametric model for estimating risk.

In this section we present a methodology to calculate the variance-covariance matrix
for a large vector of interest rates at a low computational cost. To do this we take as our
starting point the model proposed by Nelson and Siegel (1987), designed to estimate the
yield curve (TSIR).

The Nelson and Siegel formulation specifies a parsimonious representation of the

forward rate function given by:

P =,30+/31€( TjJrﬁz%e(_’:) (1

This expression allows one to accommodate the different forms that may

characterise (level, positive or negative slope, and greater or lower curvature) as a function
of four parameters ( £,, f,,/5, and 7).
Bearing in mind the fact that the spot interest rate for a term of m can be expressed

as the sum of the instantaneous forward interest rates from 0 up to m, that is, by integrating

the expression that defines the instantaneous forward rate:

r(m)= jo o,d, )

we obtain the following expression for the spot interest rate for a term of m:

m
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Equation (3) shows that spot interest rates are a function of only four parameters.
Consequentially the changes in these parameters are the variables that determine the
changes in the interest rates. Using a linear approximation we can estimate the change in the

zero coupon rate of term m from the following expression:
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In a multivariate context, the changes in the vector of interest rates that make up the

TSIR can be expressed by generalizing equation (4) in the following way:
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This approximation (equation (5)) has been used with some success in interest rate
risk management for fixed income assets (Gomez, 1999) and for portfolio immunization
(Goémez, 1998).

In the context of this model, and using expression (5), we can calculate the variance-
covariance matrix of a vector of changes in the k interest rates using the following

expression:
var(d) = G,¥ G, (©6)

where:
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At this point we note that we have arrived at an important simplification in the
dimension of the variance-covariance matrix that we need to estimate. Note that for a vector
of k interest rates, instead of having to estimate k(k+1)/2 variances and covariances, we only
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need to estimate 10 second order moments. However, the problem associated with the
difficulty of the estimation of the covariances still remains.
But we can still simplify the calculation of the variance-covariance matrix even

further, by applying principal components to the vector of the changes in the parameters

(d B;). In this way, the vector of changes in the parameters of the model of Nelson and

Siegel (1987) can be expressed as:
dp,=AF, (7
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where F, is the vector of principal components associated with the vector d B, and 4 is the

matrix of constants that form the eigenvectors associated with each one of the four
eigenvalues of the variance-covariance matrix of the changes in the parameters of the
Nelson and Siegel model (d ;).

Substituting equation (7) into equation (5) and given that each principal component

is orthogonal to the rest, we can express the variance-covariance matrix of the interest rates

as follows:
var(dr) = G, Q,G,” ®)
var( fl,t) 0 0 0
0 var( f5 ;) 0 0 N
here: Q), = ’ d ~ A.
where: Q, 0 0 var( f3,t) 0 and G; = G; x
0 0 0 var(f4 ;)

Therefore, equation (8) gives us an alternative method to estimate the variance-
covariance matrix of the changes in a vector of k interest rates using the estimation of the
four principal components of the changes in the parameters of the Nelson and Siegel (1987)
model. In this way, the dimensionality problem associated with the calculation of the
covariances has been solved.

In the following sections we evaluate this method, both to calculate the variance

matrix of a vector of interest rates, and to calculate the VaR of fixed income portfolios.
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3. Estimating the variance-covariance matrix

3.1. The data

To examine the method proposed in this paper, we estimate a daily term structure of
interest rates using actual mean daily Treasury transactions prices. The original data set
consists of daily observations derived from actual transactions in all bonds traded on the
Spanish government debt market. The database of bonds traded on the secondary market of
Treasury debt covers the period from September, 1 1995 to October, 29 1997. We use this
daily database to estimate the daily term structure of interest rates. We fit Nelson and
Siegel’s (1987) exponential model for the estimation of the yield curve and minimise price
errors weighted by duration. We work with daily data for interest rates at 1, 2,..., 15 year
maturities.

3.2. The results

In this section we examine this new approach to variance and covariance matrix
estimation. The first section begins by comparing the changes in the estimated and observed
interest rates. The changes in interest rates are modelled by equation (5), and then we
compare these changes with the observed ones'.

Then we estimate the variance-covariance matrix of a vector of 10 types of interest
rate, using the methodology proposed in the previous section, and we compare these
estimations (/ndirect Estimation) with those obtained using some habitual univariate
procedures (Direct Estimation).

Both in direct and indirect estimation we need a method for estimating variances
and covariances. For the case of indirect estimation the estimation method gives us the
variances of the four principal components of the changes in the parameters of the Nelson
and Siegel model, which allow us to obtain, from equation (8), the variance-covariance
matrix of the interest rates.

In order to estimate the variance-covariance matrix of the interest rates changes and
the variance of the principal components, we use two alternative measures of volatility:
exponentially weighted moving average (EWMA) and Generalized Autoregressive
Conditional Heteroskedasticity models (GARCH).

(1) Under the first alternative, the variance-covariance matrix is estimated using the

RiskMetrics methodology, developed by J.P. Morgan. RiskMetrics uses the so called

! The software we used in this application is MATLAB.
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exponentially weighted moving average (EWMA) method. Accordingly, the estimator for

the variance is:

N-1
var(dx,) = (1- /1)2 2 (dx,_j — dx)? )
=0
the estimator the covariance is:
N-1
cov(dx,dy,) = (1 - ’”Z A (dx,_; - dx)dv,_; —dv) (10)
=0

J.P. Morgan uses the exponentially weighted moving average method to estimate
the VaR of its portfolios. On a widely diversified international portfolio, RiskMetrics found
that the value 4=0.94 with N =20 produces the best backtesting results. In this paper, we
use both of these values.

Therefore, we obtain the direct estimations of the variance-covariance matrix

(D_EWMA) of the interest rates from equations (9) and (10) where x,and y,are the

interest rates at different maturities . For the case of indirect estimation of the variance-
covariance matrix (I_ EWMA), we use equation (9) to obtain the variances of the principal
components (where x, are now these principal components) and, from there, equation (8)
gives us the relevant matrix.

(2) The EWMA methodology, which is currently used for the Riskmetrics™ data, is
quite acceptable for calculating VaR measures, but some authors suggest that one alternative
is to use variance-covariance matrices obtained using Multivariate Generalized
Autoregressive Conditional Meteroskedasticity Models (GARCH). Nevertheless, the large
variance-covariance matrices used in VaR calculations could never be estimated directly
using a full multivariate GARCH model, because the computational complexity would be
insurmountable. For this reason we only compute the variances of interest rates changes
using univariate GARCH models and do not compute the covariance.

Given that indirect estimation (I GARCH) does not require the estimation of
covariances, we estimate the condicional variance of the principal components of the
changes in the parameter of the Nelson and Siegel model using univariate GARCH models.

In the sub-section two of this section, we compare the alternative estimations of the

variance-covariance matrix described above. This comparison is summarised in Table 1.



Table 1. Type of variance-covariance matrix estimation

Type of variance models

EWMA GARCH
Type of Direct Estimation D-EWMA D-GARCH"
estimation Indirect Estimation I-EWMA I-GARCH

* We have not estimated multivariate GARCH model because of the computational complexity
are insurmountable, so that only present the result of the variances which have been estimated

unsing univariate GARCH models.

What is relevant is that the estimation of the variance-covariance matrix using the
methodology proposed here (indirect estimation) involves a minimum calculation cost, since
it is only necessary to estimate the variance of four variables (the principal components of

the daily changes in the parameters of the Nelson and Siegel model).

3.2.1. Comparing the changes of interest rates

Firstly, we have evaluated the ability of the model that we propose here to estimate
the daily changes in a vector of interest rates. To do this, we compare the observed interest
rates with their estimations from equation (5). In Illustration 1 in the Appendix, we show the
scatter diagrams that relate the observed changes with the estimated changes in interest rates
at 1, 3, 5 and 10 years. As can be seen, independently of the period considered, the

relationship is very close.

In Table 2 we report some descriptive statistics of the errors of estimation of the
interest rate. The average error is very small, about five basic points for all maturities. This
error represents, in relative terms, 0.5% of the interest rates. Furthermore, we observe too
that both the average error and the standard deviation are very similar in all period lengths

so that the accurate of the model seems good for all maturities.



Table 2. Estimation errors in interest rates. Descriptive statistics.

1 year 2years 3years 4years Syears 6years 7years 8 years 9years 10 years
Mean @ 3.1 43 438 5.0 5.1 5.0 5.0 5.0 5.0 5.0
Standard deviation| 4.3 5.6 6.2 6.4 6.5 6.5 6.4 6.4 6.4 6.4
Maximum error 30.6 25.2 26.2 26.6 25.7 25.2 25.2 25.1 25.0 25.0
Minimum error -17.5 219 -24.0 -24.5 -24.4 243 243 244 -24.5 -24.7

Note: The sample period is from 1/9/1995 to 29/10/1997. The errors (and all statistics) are expressed in basic
points. @ The average error is calculated in absolute value.

Therefore, these results imply that the degree of error committed when estimating
the changes in zero coupon rates using equation (5) are practically non-existent. In what
follows, we evaluate the differences in the estimation of the variance-covariance matrix

using the different alternatives.

3.2.2. Comparing the estimations of variance-covariance matrix

In Illustration 2 we show the conditional variances of the interest rates at 1, 3, 5 and
10 years, as estimated using the exponentially weighted moving average method, both
directly and indirectly: D EWMA versus I EWMA. In Illustration 3 we show the direct
estimation of the conditional variances of these same interest rates using the GARCH
(D_GARCH) models, and the indirect estimation of the same data (I_ GARCH). As can be
seen in both illustrations, in most of the time horizons considered, the variances estimated

using the method proposed in this paper are very similar to the direct estimates.

The descriptive statistics of the differences between the standard deviations that are
estimated using both procedures are reported in Table 3. We compare the direct and indirect
estimation methods using an EWMA model in panel (a), and using a GARCH model in
panel (b). Panel (a) shows that the differences in absolute value for EWMA specification
oscillate between 0.62 and 1 base point. This average difference represents between 10%
and 20% of the size of the estimated series.

Panel (b) of Table 3 also shows that the average difference in absolute value for
GARCH specification is quite small, even though greater than those of panel (a). However,
as a percentage of the estimated conditional variance series, these differences are smaller
than those of panel (a). In both comparisons, we can note that the range of differences

between each pair of estimations is far greater for a one year rate than for the other horizons.
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We also note that the range of the estimation error is also greater for the case of one year

than for the other interest rates (Table 2).

Table 3. Differences in the estimation of the standard deviation of interest rates. Descriptive
statistics.

1year 2years 3years 4years Syears 6years 7years 8years 9years 10 years

Panel (a): Comparing D EWMA vs. I EWMA.

Mean © 074 062  0.77 0.9 0.96  0.99 1 1.01 1 0.99
Standard deviation 1.28 0.83 1.02 1.17 1.25 1.29 1.31 1.32 1.32 1.31
Maximum error 1.12 1.71 1.92 2.03 2.1 2.1 2.05 1.97 1.88 1.78
Minimum error -14.48  -5.31 -3.12 -3.88 -4.56 -5.25 -5.61 -5.77 -5.79 -5.74
Panel (b): Comparing D EGARCH vs. I EGARCH.

Mean @ 0.89 1.21 0.96 0.86 0.83 0.81 0.77 0.87 0.84 0.8

Standard deviation 1.35 1.1 1.29 1.28 1.24 1.28 1.25 1.26 1.25 1.23
Maximum error 17.6 5.31 7.72 7.61 7.34 8.21 791 72 7.44 7.58
Minimum error -0.8 -3.37  -2.15 -1.61 -146  -127 -129 258 -247 249

Note: Sample period from 29/9/1995 to 29/10/1997 (515 observations). I EWMA indirect estimation (equation (8))
and D EWMA direct estimation. Riskmetrics methodology (EWMA). I_ GARCH: indirect estimation (equation (8))
and D_GARCH direct estimation. Conditional autoregressive volatility models (GARCH). ® The average of the
differences has been calculated in absolute value. Differences measured in base points.

We now compare the covariances estimated directly with those obtained from the
procedure suggested in this paper. As we have mentioned above, given the extreme
complexity of the GARCH multivariate model estimations, the direct estimation of the

covariances was only done using EWMA models.

[lustration 4 shows the estimated covariances between the different pairs of interest
rates, using both procedures: D EWMA versus | EWMA. As can be seen in the graphs, the
estimated covariances have very similar behaviour, although we can note that there are
greater differences than for the variances. In Table 4 we report some of the descriptive
statistics of the estimated covariances. The average absolute value difference is very small,
between 0.0007 and 0.0019. However, this does represent about 40% of the average

estimated covariance.
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Table 4. Differences in the estimation of covariances between interest rates. Descriptive
statistics.

Comparing D EWMA vs. | EWMA

1 year 3 years 5 years

3 years 5 years 10 years 5 years 10 years 10 years

Mean @ 0.0008 0.0007 0.0007 0.0019 0.0018 0.0017
Standard deviation 0.0013 0.0013 0.0015 0.0020 0.0021 0.0022
Maximum error 0.0042 0.0078 0.0131 0.0032 0.0037 0.0046
Minimum error -0.0140 -0.0120 -0.0138 -0.0162 -0.0170 -0.0172

Note: Sample period from 29/9/1995 to 29/10/1997 (515 observations). I EWMA indirect estimation
(equation (8)) and D EWMA direct estimation. Riskmetrics methodology (EWMA). @ The average
difference is calculated in absolute value.

To sum up this section, we have shown that the procedure proposed in this paper to
estimate the variance-covariance matrix of a large vector of interest rates generates results
that are quite satisfactory, above all as far as variances are concerned. For the case of co-
variances, we have detected some differences that could be important. In the following
section we evaluate whether these differences are important for risk management. To do
this, we apply the methodology to the calculation of Value at Risk (VaR) in several fixed

income portfolios.

4. Estimating the Value at Risk
In this section we evaluate the utility of the proposed method for risk management
of fixed income portfolios, by constructing a parametric measure of VaR as an indicator of

the risk of a given portfolio.

4.1. Value at Risk
The VaR of a portfolio is a measure of the maximum loss that the portfolio may
suffer over a given time horizon and with a given probability. Formally, the VaR measure is

defined as the lower limit of the confidence interval of one tail:

Pr[ AV, (7)<VaR, |=« (10)

where « is the level of confidence and AV (z’) is the change in the value of the portfolio

over the time horizon 7 .
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The methods that are based on the parametric, or variance-covariance, approach
start with the assumption that the changes in the value of a portfolio follow a Normal
distribution. Assuming that the average change is zero, the VaR for one day of portfolio j is

obtained as:

VaR; (%) = 01 ay; ko, (11
where ko, is the a percentile of the Standard Normal distribution, and the parameter to

estimate is the standard deviation conditional upon the value of portfolio j (o, av; ).

In a portfolio that is made up of fixed income assets, the duration can be used to
obtain the variance of the value of portfolio j from the variance of the interest rates in the

following way (Jorion, 2000):

2 1
Ordv; = D; %D, (12)
where X is the variance-covariance matrix of the interest rates and D it is the vector of the

duration of portfolio j. This vector represents the sensitivity of the value of the portfolio to
changes in the interest rates that determine its value.

In this section, value at risk measures are calculated and compared. In the
parametric approach, we use the estimations of the variance-covariance matrix as obtained
in the previous section (see Table 1). Table 5 illustrates the four measures of VaR that we

obtain from the four variance-covariance models:

Table 5. Type of VaR measures

Type of variance- covariance | Type of VaR measure

matrix estimation

D EWMA VaR D EWMA
Direct Estimation §
D GARCH VaR D GARCH
I EWMA VaR I EWMA
Indirect Estimation
I GARCH VaR I GARCH

* We did not compute VaR_D_GARCH because of the impossibility to estimate a multivariate GARCH

model with 10 variables.

In the case of the first VaR measure, VaR_ D EWMA, the VaR is obtained by

directly estimating X, with an EWMA model. This is a popular approach to measuring

market risk, and it is used by JP Morgan (RiskMetric'™). The second VaR measure,
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VaR D GARCH, is also obtained by directly estimating the variance-covariance matrix,
but in this case the second order moments are estimated using GARCH models. This VaR
measure has not been calculated, given that the large variance-covariance matrices used in
VaR calculations could never be estimated directly using a full multivariate GARCH model,
because the computational complexity would be insurmountable.

The final two VaR measures are calculated by estimating the variance-covariance
matrix of the interest rates using the procedure described in Section 2. We can estimate the
variance-covariance matrix of interest rates indirectly, by substituting equation (8) into
equation (12) to obtain a new expression for the variance of the changes in the value of the

portfolio:
o2 =D, G QG D, =D".Q,D" (13)
t,de Jot t J»t Jot 2ot 't
In indirect estimation, ), is a diagonal matrix that contains on its principal
diagonal the conditional variance of the principal components of the changes in the four

parameters of the Nelson and Siegel model, and Dgrjt is the modified vector of durations of

portfolio j (of dimension 1x4) which represents the sensitivity of the value of the portfolio to
changes in the principal components of the four parameters of the Nelson and Siegel model.
In the VaR I EWMA, we use an EWMA model to estimate the variance of the principal
components; and we use a GARCH model to estimate these variances in the case of the

calculation of the VaR I GARCH measure.

4.2. The portfolios

In order to evaluate the procedure proposed in this paper for calculating VaR we
have considered 4 different portfolios made up of theoretical bonds with maturities at 3, 5,
10 and 15 years, constructed from real data from the Spanish debt market. In each portfolio,
the bond coupon is 3.0%. The period of analysis is from 29/9/1995 to 29/10/1997, which
allows us to perform 516 estimations of daily VaR for each portfolio.

In order to estimate the daily VaR we have assumed that the characteristics of each
portfolio do not change over the dates of the period of analysis: the initial value of the
portfolio, the maturity date and the coupon rate. In this way, the results are comparable over
the entire period of analysis since we avoid both the pull to par effect (the value of the bonds
tends to par as the maturity date of the bond approaches) and the roll down effect (the

volatility of the bond decreases over time).
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4.3. Comparing VaR measures

In this section value at risk measures are compared. For all portfolio considered we
calculate daily VaR at a 5%, 4%, 3%, 2% and 1% confidence level. Firstly, before formally
evaluating the precision of the VaR measures under comparison, we examine actual daily
portfolio value changes as implied by daily fluctuations in the zero cupon interest rate and
compare them with the 5% VaR. In Illustration 5 we show the actual change in a 10 year
portfolio together with the VaR at 5% for the three measures of VaR that we consider:
VaR D EWMA (Figure 1), VaR_I EWMA (Figure 2) and VaR I GARCH (Figure 3). In
Figures 1 and 2 we observe that the value of the portfolio falls below the VaR on more
occasions than in Figure 3. In all case, the number of times that the value of the portfolio
falls below the VaR is closer to its theoretical level. This result is also evident in the other
portfolios that we consider, but that we have not reported due to space considerations. This
preliminary analysis suggests that the estimations of VaR that are obtained from both
models, both directly and indirectly are very precise. However, a more rigorous evaluation
of the precision of the estimations is required.

We then compare VaR measures the actual change in portfolio value on day #+1,

denoted as AV, .1If AV,

e ".1 < VaR, then we have an exception. For testing purposes, we

define the exception indicator variable as

1 if AV, <VaR
t+1: . (14)
0 if AV, >VaR

t+1

a) Testing the Level

The most basic test of a value at risk procedure is to see if the stated probability
level is actually achieved. The mean of the exception indicator series is the level of the
procedure that is achieved. If we assume the probability of an exception is constant, then the
number of exceptions follows the binomial distribution. Thus it is possible to form

confidence intervals for the level of each VaR measure (see Kupiec (1995)).
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Table 6. Testing the Level

Number of exceptions Confidence
intervals at
VaR measures 3-years  S-years 10-years 15-years | the 95% level
VaR D EWMA (1%) 5 5 8 10 (1-10)
VaR D EWMA (2%) 6 10 12 12 S-17)
VaR D EWMA (3%) 10 11 14 14 (8-23)
VaR D EWMA (4%) 14 16 18 18 (12 -30)
VaR D EWMA (5%) 21 23 22 24 (17 -36)
VaR I EWMA (1%) 6 9 9 11 (1-10)
VaR I EWMA (2%) 7 14 14 14 (5-17)
VaR_I_EWMA (3%) 17 16 18 19 (8-23)
VaR_1I_EWMA (4%) 19 24 23 24 (12 -30)
VaR I EWMA (5%) 21 29 29 28 (17-36)
VaR_1I_GARCH (1%) 3 5 5 4 (1-10)
VaR_I_GARCH (2%) 5 9 7 5 (5-17)
VaR_I_GARCH (3%) 7 9 13 11 (8-23)
VaR_I_GARCH (4%) 1" 13 14 14 (12 - 30)
VaR I GARCH (5%) 13° 17 17 17 (17-36)

Note: Sample period 29/9/1995 to 29/10/1997. Confidence intervals derived from the number
of exceptions follows the binomial distribution (516, x%) for x=1, 2, 3, 4 and 5. An * indicates
the cases in which the number of exceptions is out of the confidence interval, so that, we obtain
evidence to reject the null hypothesis at the 5% level type I error rate.

Table 6 shows the level that is achieved and-a 95% confidence interval for each of
the 1-day VaR estimates. An * indicates the cases in which the number of exceptions is out
of the confidence interval, so that, we obtain evidence to reject the null hypothesis at the 5%
confidence level. For the three measures and almost all portfolios considered, the number of
exceptions is inside the interval confidence, so that the VaR estimation (direct and indirect)
seems to be good.

We find just only three cases in which the number of exceptions is out of the
confidence interval. This happen for VaR I GARCH measure for 3%, 4% and 5%
confidence level of the portfolio at 3 years. In those cases the number of exceptions are
much lower than the theoretical level, so that it seems that this measure is overestimating the

risk of short-term portfolio.
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b) Testing Consistency of Level

We want the level of the VaR that is found to be the stated level on average, but we
also want to find the stated level at all points in time. One approach to testing the
consistency of the level is to use the Ljung-Box portmanteau test (Ljung and Box, 1978) on
the exception indicator variable of zeros and ones. When using Ljung-Box tests, there is a
choice of the number of lags in which to look for autocorrelation. If the test uses only a few
lags but autocorrelation occurs over a long time frame, the test will miss some of the
autocorrelation. Conversely should a large number of lags be used in the test when the
autocorrelation is only in a few lags, then the test won’t be as sensitive as if the number of
lags in the test matched the autocorrelation.

Different lags have been used for each estimate in order to try to get a good idea of

the autocorrelation. Table 7 shows the Ljung-Box statistics at lags of 4 and 8.
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Table 7. Testing Consistency of Level

Lags 3- years S-years 10-years 15-years
VaR_ D EWMA (1%) 4 0,20 (0,995) 0,20 (0,995) 0,52 (0,971) 0,82 (0,936)
8 0,41 (1,000) 0,41 (1,000) 1,06 (0,998) 5,07 (0,750)
VaR_D EWMA (2%) 4 0,29 (0,990) 0,82 (0,936) 1,19 (0,879) 1,19 (0,879)
8 0,59 (1,000) 4,98 (0,760) 13,60" (0,093) 4,10 (0,848)
VaR_ D EWMA (3%) 4 4,13 (0,389) 1,00 (0,910) 1,64 (0,802) 2,30 (0,681)
8 4,85 (0,773) 4,46 (0,814) 11,22 (0,189) 5,41 (0,713)
VaR_D EWMA (4%) 4 2,96 (0,565) 2,16 (0,707) 2,30 (0,681) 5,29 (0,258)
8 5,26 (0,729) 4,41 (0,819) 7,30 (0,504) 7,17 (0,518)
VaR_D EWMA (5%) 4 2,66 (0,617) 2,16 (0,707) 4,44 (0,349) 6,04 (0,196)
8 10,66 (0,222) 6,59 (0,581) 7,90 (0,444) 7,33 (0,502)
VaR I EWMA (1%) 4 0,29 (0,990) 0,66 (0,956) 0,66 (0,956) 3,37 (0,498)
8 0,59 (1,000) 5,91 (0,657) 5,91 (0,657) 6,77 (0,562)
VaR_ I EWMA (2%) 4 0,40 (0,983) 2,30 (0,681) 2,30 (0,681) 8,57  (0,073)
8 0,80 (0,999) 5,27 (0,728) 4,63 (0,796) 10,90 (0,207)
VaR_1I EWMA (3%) 4 2,20 (0,700) 2,16 (0,707) 4,84 (0,305) 4,28 (0,369)
8 7,79 (0,454) 4,34 (0,826) 6,71 (0,568) 5,47 (0,706)
VaR I EWMA (4%) 4 2,44 (0,656) 1,28 (0,864) 3,30 (0,509) 4,03 (0,403)
8 6,75 (0,564) 2,62 (0,956) 4,48 (0,812) 6,82 (0,557)
VaR_ I EWMA (5%) 4 1,93 (0,748) 0,75 (0,945) 3,53 (0,474) 3,78 (0,436)
8 5,55 (0,698) 2,49 (0,962) 7,87 (0,447) 14,77 (0,064)
VaR_I_GARCH (1%) 4 0,07 (0,999) 0,20 (0,995) 0,20 (0,995) 0,13 (0,998)
8 0,15 (1,000) 0,41 (1,000) 0,41 (1,000) 0,26 (1,000)
VaR I GARCH (2%) 4 0,20 (0,995) 0,66 (0,956) 0,40 (0,983) 0,20 (0,995)
8 0,41 (1,000) 591 (0,657) 9,68 (0,288) 19,69 (0,012)
VaR I GARCH (3%) 4 0,40 (0,983) 0,66 (0,956) 2,51 (0,643) 3,37 (0,497)
8 0,80 (0,999) 5,91 (0,657) 6,15 (0,630) 9,15 (0,330)
VaR_1I_GARCH (4%) 4 1,00 (0,910) 1,40 (0,843) 2,29 (0,682) 2,29 (0,682)
8 4,40 (0,820) 5,04 (0,753) 5,28 (0,727) 5,93 (0,655)
VaR I GARCH (5%) 4 2,51 (0,643) 1,95 (0,746) 2,19 (0,701) 1,95 (0,745)
8 5,05 (0,752) 3,66 (0,886) 3,91 (0,865) 3,67 (0,886)

Note: Sample period 29/9/1995 to 29/10/1997. The Ljung-Box Q-statistics on the exception
indicator variable and their p-values. The Q-statistic at lag 4 (8) for the null hypothesis that there is
no autocorrelation up to order 5 (10). An * indicates that there is evidence to reject the null
hypothesis at the 5% level type I error rate.

We only detect the existence of autocorrelation in the portfolios at 10 years with the
VaR D EWMA (2%) estimate, in the portfolio at 15 years with the measures
VaR I EWMA (2%) and (5%) and the portfolio at 15 years with the measures
VaR 1 GARCH (2%). In general, the results of the Ljung-Box comparison indicate that

autocorrelation is not present. When we consider other lags, that are not reported here in the
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interests of space, the result are pretty the same, so that the VaR estimate also seems to be
good using this test.

¢) Unconditional Coverage Tests

Assuming that a set of VaR estimates and their underlying model are accurate, the
exceptions can be modeled as independent draws from a binomial distribution with a

probability of occurrence equal to & percent. Accurate VaR measures should exhibit the
property that their unconditional coverage & = x/T equals & percent, where x is the
number of exceptions and 7" the number of observations. The likelihood ratio statistic for

testing whether @ = « is
LR = 2[10g(0?" (1 —o”z)H)— log(a" (1-a) )}

which has an asymptotic x* (1) distribution.
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Table 8. Unconditional Coverage Tests and The Back-testing Criterion
(a) (b)

% of exceptions

3- years 5-years 10-years 15-years
VaR D EWMA (1%) 1.0% 1.0% 1.6% 1.9% "
(0,002) (0,002) (0,587) (1,563)
[-0,071] [-0,071] [1,257] [2,141]
VaR D EWMA (2%) 1,2%" 3,1% 3,9%" 43%"
(0,942) (-1,156) (-1,565) (-2,340)
[-1,358] [1,786] [3,044] [3,673]
VaR D EWMA (3%) 1,9%" 2,1%" 2.7% 2.7%

(0,990) (0,644) (0,065) (0,065)
[-1,414] [-1,156] [-0,382] [-0,382]

VaR D EWMA (4%) 2,7%" 3,1%" 3,5% 3,5%
(1,086) (0,510) (0,159) (0,159)
[-1,492] [-1,042] [-0,593] [-0,593]
VaR D EWMA (5%) 4.1%" 4.5% 43% 4.7%
(0,435) (0,144) (0,269) (0,059)
[-0,970] [-0,566] [-0,768] [-0,364]
VaR I EWMA (1%) 1.2% 1.7%" 1.7% 2.1%
(0,057) (1,026) (1,026) (2,189)
[0,372] [1,699] [1,699] [2,584]
VaR I EWMA (2%) 1,4%" 2.7%" 2,7%" 2,7%"
(0,533) (0,524) (0,524) (0,524)
[-1,044] [1,157] [1,157] [1,157]
VaR I EWMA (3%) 3,3% 3,1% 3,5% 3,7%"
(0,065) (0,008) (0,175) (0,335)
[0,392] [0,134] [0,650] [0,908]
VaR I EWMA (4%) 3,7% 4.,7% 4,5% 4,7%
(0,061) (0,236) (0,118) (0,236)
[-0,368] [0,755] [0,530] [0,755]
VaR I EWMA (5%) 41%" 5,6% 5,6% 5,4%
(0,435) (0,175) (0,175) (0,084)
[-0,970] [0,646] [0,646] [0,444]
VaR I GARCH (1%) 0,6%" 1,0% 1,0% 0.8%

(0,467) (0,002) (0,002) (0,124)
[-0,956] [-0,071] [-0,071] [-0,513]

VaR I GARCH (2%) 1,0%" 1,7% 1,4%" 1,0%"
(1,498) (0,078) (0,533) (1,498)
[-1,673] [-0,415] [-1,044] [-1,673]
VaR I GARCH (3%) 1,4%"" 1,7%" 2,5% 2,1%"
(2,602) (1,425) (0,188) (0,644)
[-2,188] [-1,672] [-0,640] [-1,156]
VaR I GARCH (4%) 2.1%" 2.5%" 2,7%" 2,7%"

(2,441) (1,467) (1,086) (1,086)
[-2,166] [-1,716] [-1,492] [-1,492]
VaR I GARCH (5%) 2,5%" 3.3% 3.3% 3.3%
(3,522) (1,552) (1,552) (1,552)
[-2,585] [-1,778] [-1,778] [-1,778]
Note: Sample period 29/9/1995 to 29/10/1997. (a) Between parentheses Unconditional Coverage Tests: The LR
statistic for testing whether the percentage of exceptions (4 = x/7) is « percent. An * indicates that there is

evidence to reject the null hypothesis at the 5% level type I error rate. (b) Between square brackets Back-testing
Criterion: The Z statistic for determining the significance of departure for 4 = x/T from ¢ %. An + indicates that

there is evidence to reject the null hypothesis at the 5% level type I error rate.
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Table 8 reports the percentage of exceptions observed for the 1%, 2%, 3%, 4% and
5% quantiles over the entire sample period. In parentheses, Table 8 reports the LR statistic
for testing whether the percentage of exceptions is the quantile. For the case of measures
obtained from VaR I EWMA, independently of the quantile considered, we reject the null
hypothesis that the percentage of exceptions coincides with the corresponding quantile in
40% of the cases. The result with VaR_I EWMA measure are pretty the same (45%). It is
worth to note that the measure VaR_D EWMA produce a slight underestimation the risk for
1% confidence level and overestimate the risk for 2%, 3%, 4% and 5% confidence level.
However, the measure VaR I EWMA underestimate the risk for 1%, 2% and 3% and
overestimate for 5% confidence level.

The result are worst with the measure VaR_1I GARCH. For this measure reject the
null hypothesis in 75% of the times. With this measure overestimating the risk in all cases. It
seems that whem the aim is to calculate value at risk, the GARCH models doesn’t produce a

good estimation of the volatility.

d) The Back-testing Criterion

The back-testing criterion is used to evaluate the performance of these VaR
measures. The most popular back-testing measure for accuracy of the quantile estimator is
the percentage of returns falling below the quantile estimate, denoted as & . For an accurate
estimator of an « quantile, & will be very close to @ %. In order to determine the
significance of departure of & from a %, the following test statistic is used™:

Z=(Té - Ta%)/\JTa%(1-a%) —s N(0,1)
where T is the simple size.

Table 8 presents the Z statistic for VaR measures in square brackets. For the case of
measures obtained from EWMA, (independently of the quantile considered), we reject the
null hypothesis that the percentage of exceptions coincides with the corresponding quantile
in three cases with the VaR D EWMA measure and one time with the VaR I EWMA
measure. On the other hand, with this test just only in three cases of the VaR I GARCH
measure reject the hypothesis.

In summary, we can say that the VaR measures we obtain using the simplification

proposed in this paper are so good as that we obtain from Riskmetrics method
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(VaR_D EWMA). The advantage of the method we propose is that the computational cost
to calculate value at risk is much lower. Additionally, we find slight evidence that to
estimate value at risk the EWMA model seem more accurate that the autoregressive

conditional volatility models (GARCH models).

5. Conclusion

In this paper we propose a method for calculating the variance-covariance matrix of
a large set of interest rates with a low computational cost. The methodology suggested
exploits the parametrization of the underlying interest rates that was proposed by Nelson
and Siegel (1987) for estimating the yield curve. The method proposed in this paper turns
out to be useful for estimating VaR, since it simplifies considerably the calculation of this
measure.

Following the papers of Alexander (2001) and Gento (2000), the starting point for
our method is an explanatory model of the interest rates. However, contrary to those
authors, our model is based on that of Nelson and Siegel (1987) whose objective was to
estimate the TSIR. Using a linear approximation, this model provides a relationship in
which the changes in interest rates are a function of the changes in four parameters.
Although this approximation reduces the dimension of the variance-covariance matrix, it
still requires covariances to be estimated. In order to solve this problem, we propose the
application of principal components of the changes in the four parameters of the Nelson and
Siegel model (1987). Given the orthogonality of the principal components among
themselves, the resulting variance-covariance matrix has a smaller dimension since it is
diagonal, that is, all the covariances are zero.

The procedure that we propose in this paper has been contrasted using data from the
Spanish debt market. The results of this application of our methodology are very
satisfactory. On the one hand, the variances that we estimate with our procedure and those
that are given by a direct estimation are quite similar, independently of the method used to
estimate them (Exponentially Weight Moving Average Model (EWMA) vs. autoregressive
conditional volatility models).

Concerning the calculation of VaR, the estimations that we obtain using EWMA
models, both under direct and indirect estimation (following the procedure proposed here)

are quite precise. The estimations of VaR get worse when we directly estimate the variance-

% This criterion has been used by Alexander and Leigh (1997), etc.
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covariance matrix of the interest rates using GARCH models. These results not only validate
the methodology proposed in this paper, but they also point out that the use of EWMA

models for calculating VaR yields superior results to those obtained using GARCH models.
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Appendix

The market value of the portfolio j at the moment?, which denoteV;

;1> depend on

k zero coupon interest rate to different maturities, as you can see in equation (1):
Vie =S @10,1,(2),7,3),....7; (k) (1)
where f is a general function and 7,(m) is the zero coupon interest rate at maturity m ,

( m =1,..k) . From the equation (1) the portfolio value changes can be written as follow

av;, =D, dr, )
ov,, ov,, ov,, v, ,
where: D, =24, L L~ and dr, =[dr,(1),dr,(2),dr,(3)...dr, (k)]
v a”l,z a’”z,z ar3,t ark,t

Taking variances to both side of the equation (2) we get the following expression
) \
G dvjy = Dj,t zdrt D . 3)
where O'dej,t represent the variance of the portfolio value changes j and X dp 1S @

matrix k x k which represent the variance-covariance matrix of the vector of the interest rate
changes.

When the portfolio value depends on a very large set vector of interest rate, the

dimension of > ar, Will be high, so that to estimate this matrix we will find a dimension

problem. This problem can be solved whether, as in others areas of fixed income portfolio,
we assume that the structure term interest rate (TSIR) can be explained by a few number of
variables o factors.
Taking the Nelson and Siegel model as starting point to explain the TSIR, the
interest rate changes we can be estimated using the following expression
dr, = G, df 4)

where:

dr, = [dr, (1),dr,(2),dr,(3)...dr, (k)] dp, =(dp,,.dp,,dp,,...dr, )
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or,(1) or() ord) or(l)

B, op, op, ot
or(2) or(2) on(2) or(2)

op, op, op, ot
or, (k) or(k) or(k) or (k)

B, op, op, ot

In the context of this model, and using expression (4), we can calculate the variance-

covariance matrix of a vector of changes in the £ interest rates using the following

expression:

where:

var(fy ) cov(ByBry) cov(BoyPay)  cov(By,ty)
var(By;)  cov(Byfay)

Za, =G, YG,

Var(IBZ,t)

COV(ﬂl,tTt)
cov(fr,7)
var(z;)

)

At this point we note that we have arrived at an important simplification in the

dimension of the variance-covariance matrix that we need to estimate. Note that for a vector

of k interest rates, instead of having to estimate k(k+1)/2 variances and covariances, we only

need to estimate 10 second order moments. However, the problem associated with the

difficulty of the estimation of the covariances still remains.

But we can still simplify the calculation of the variance-covariance matrix even

further, by applying principal components to the vector of the changes in the parameters

(d B;). In this way, the vector of changes in the parameters of the model of Nelson and

Siegel (1987) can be expressed as:

dp, = AF,
! 2
Ay 2p
! al a’
F = [fl,tafz,taf3,ta f4,t] and A= 1[31 [231
ap, 3ap,
1 2
L a‘r a‘r
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where F} is the vector of principal components associated with the vector d 3, and 4 is the

matrix of constants that form the eigenvectors associated with each one of the four
eigenvalues of the variance-covariance matrix of the changes in the parameters of the

Nelson and Siegel model (d £;).

Substituting equation (6) into (4) we get equation (7):

dr, ~ G"\F, (7)
where Gf =G,A. G, isamatrix kx4and A is a matrix 4 x4 . Both matrixes were

defined before.
Taking variances at both side of the equation (7) we get the following expression

Y4 =G QG (8)
where Q, is the variance-covariance matrix of the principal component of the parameters
changes, which is a diagonal matrix because the principal component are uncorrelated
on, 0 0 0
0 op, 0 0
0 0 of, O
o 0 0 op,
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Ilustration 1. Comparing the changes of interest rates observed with the estimated changes (equation (5)).
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Ilustration 2. Comparing the variance of changes of interest rate: Direct and indirect estimation using
exponentially weighted moving average model.

Figure 1(a). Conditional Standar Deviation, 1 year
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Figure 3(a). Conditional Standar Deviation, 5 years
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Hlustration 3. Comparing the variance of changes of interest rate: Direct and indirect estimation using

GARCH model.

Figure 1(a). Conditional Standar Deviation, 1 year
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Hlustration 4. Comparing the covariance between interest rate: Direct and indirect estimation using
exponentially weighted moving average model.
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Figura 2(a). Conditional Covariance, 3 years - 5 years
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Figura 3(a). Conditional Covariance, 3 years - 10 years
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Figura 4(a). Conditional Covariance, 5 years - 10 years
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Figure 1(b). 1 year - 3 years
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Hlustration 5. The 5% one day VaR for a 10 year portfolio. Direct estimation using an exponentially
weighted moving average model, VaR_ D _EWMA(5%), indirect estimation using an exponentially
weighted moving average model, VaR I EWMA(5%), and indirect estimation using a GARCH model,
VaR I GARCH(5%).
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