RESEARCH GROUP OF OPTIMIZACIÓN VECTORIAL (Code : 55)
Resultados
Trabajos de los miembros del grupo desde 2002 (ordenados por año):
A) Revistas clasificadas en el JCR de ISI
Desde 2002 hasta 2006
ADÁN, M., NOVO, V. (2002). Optimality conditions for vector optimization problems with generalized convexity in real linear spaces. Optimization 51, no. 1, 73-91.
JIMÉNEZ, B. (2002). Strict efficiency in vector optimization. J. Math. Anal. Appl. 265, no. 2, 264-284.
JIMÉNEZ, B., NOVO, V. (2002). A finite dimensional extension of Lyusternik theorem with applications to multiobjective optimization. J. Math. Anal. Appl. 270, no. 2, 340-356.
JIMÉNEZ, B., NOVO, V. (2002). Alternative theorems and necessary conditions for directionally differentiable multiobjective programs. J. Convex Anal. 9, no. 1, 97-116 .
JIMÉNEZ, B., NOVO, V. (2002). First and second order sufficient conditions for strict minimality in multiobjective programming. Numer. Funct. Anal. Optim. 23, no. 2&3, 303-322.
MIGLIERINA, E., MOLHO, E. (2002). Scalarization and stabitility in vector optimization. J. Optim. Theory Appl. 114, no. 3, 657-670.
ADÁN, M., NOVO, V. (2003). Efficient and weak efficient points in vector optimization with generalized cone convexity. Appl. Math. Lett. 16, no. 2, 221-225.
ADÁN, M., NOVO, V. (2003). Weak efficiency in vector optimization using a closure of algebraic type under some cone-convexlikeness. European J. Oper. Res. 149, no. 3, 641-653.
JIMÉNEZ, B. (2003). Strict minimality conditions in nondifferentiable multiobjective programming. J. Optim. Theory Appl. 116, no. 1, 99-116.
JIMÉNEZ, B., NOVO, V. (2003). A notion of local proper efficiency in Borwein sense in vector optimization. ANZIAM J. 45, no. 1, 75-89.
JIMÉNEZ, B., NOVO, V. (2003). First and second order sufficient conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284, no. 2, 496-510.
JIMÉNEZ, B., NOVO, V. (2003). Optimality conditions in directionally differentiable Pareto problems with a set constraint via tangent cones. Numer. Funct. Anal. Optim. 24, no. 5&6, 557-574.
JIMÉNEZ, B., NOVO, V. (2003). Second order necessary conditions in set constrained differentiable vector optimization. Math. Methods Oper. Res. 58, no. 2, 299-317.
MIGLIERINA, E., MOLHO, E (2003). Well-posedness and convexity in vector optimization. Math. Methods Oper. Res. 58, no. 3, 375-385.
ADÁN, M., NOVO, V. (2004). Proper efficiency in vector optimization on real linear spaces. J. Optim. Theory Appl. 121, no. 3, 515-540.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2004). On constraint qualifications in directionally differentiable multiobjective optimization problems. RAIRO-Oper. Res. 38, no.3, 255-274.
JIMÉNEZ, B., NOVO, V. (2004). Optimality conditions in differentiable vector optimization via second-order tangent sets. Appl. Math. Optim. 49, no. 2, 123-144.
LUCHETTI, R.E., MIGLIERINA, E. (2004). Stability for convex vector optimization problems. Optimization 53, no. 5-6, 517-528.
MIGLIERINA, E. (2004). Slow solutions of a differential inclusion and vector optimization. Set-Valued Anal. 12, no. 3, 34-356.
ADÁN, M., NOVO, V. (2005). Errata Corrige: Proper efficiency in vector optimization on real linear spaces. J. Optim. Theory Appl. 124, no. 3, 751-751.
FLORES-BAZÁN, F., LÓPEZ, R. (2005). Characterizing Q-matrices beyond L-matrices. J. Optim. Theory Appl. 127, no. 2, 447-457.
FLORES-BAZÁN, F., LÓPEZ, R. (2005). The linear complementarity problem under asymptotic analysis. Math. Oper. Res. 30, no. 1, 73-90.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2005). A chain rule for ε-subdifferentials with applications to approximate solutions in convex Pareto problems. J. Math. Anal. Appl. 310, no. 1, 309-327.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2005). A property of efficient and ε-efficient solutions in vector optimization. Appl. Math. Lett. 18, no. 4, 409-414.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2005). Multiplier rules and saddle point theorems for Helbig’s approximate solutions in convex Pareto problems. J. Global Optim. 32, no. 3, 367-383.
MIGLIERINA, E., MOLHO, E. (2005). Convergence of minimal sets in convex vector optimization. SIAM J. Optim. 15, no. 2, 513-526.
MIGLIERINA, E., MOLHO, E., ROCCA, M. (2005). Well-posedness and scalarization in vector optimization. J. Optim. Theory Appl. 126, no. 2, 391-409.
FLORES-BAZÁN, F., LÓPEZ, R. (2006). Asymptotic analysis, existence and sensitivity results for a class of multivalued complementarity problems. ESAIM J. Control Optim. Cal. Var. 12, no .2, 271-293.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2006). A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, no. 3, 688-710.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2006). On approximate efficiency in multiobjective programming. Math. Methods Oper. Res. 64, no.1, 165-185.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2006). On approximate solutions in vector optimization problems via scalarization. Comput. Optim. Appl. 35, no.3. 305-324.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2006). ε-Pareto optimality conditions for convex multiobjective programming via max function. Numer. Funct. Anal. Optim. 27, no. 1, 57-70.
JIMÉNEZ, B., NOVO, V. (2006). Characterization of the cone of attainable directions. J. Optim. Theory Appl. 131, no. 3, 493-499.
Desde 2007 hasta 2011
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2007). Optimality conditions for metrically consistent approximate solutions in vector optimization. J. Optim. Theory Appl. 133, no. 1, 49-64.
HERNÁNDEZ, E., JIMÉNEZ, B., NOVO, V. (2007). Weak and proper efficiency in set-valued optimization on real linear spaces. J. Convex Anal. 14, no. 2, 275-296.
MIGLIERINA, E., MOLHO, E. (2007). Well-posedness and stability for abstract spline problems. J. Math. Anal. Appl. 333, no. 2, 1058-1069.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2007). (Lambda,C)-contingent derivatives of set-valued maps. J. Math. Anal. Appl. 335, no. 2, 974-989.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2007). About contingent epiderivatives. J. Math. Anal. Appl. 327, no. 2, 745-762.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2007). Corrigendum to ``About contingent epiderivatives'' [J. Math. Anal. Appl. 327 (2007) 745–762]. J. Math. Anal. Appl. 335, no. 2, 1486-1486.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2007). Variational characterization of the contingent epiderivative. J. Math. Anal. Appl. 335, no. 2, 1374-1382.
FLORES-BAZÁN, F., HERNÁNDEZ, E., NOVO, V. (2008). Characterizing efficiency without linear structure: a unified approach. J. Global Optim. 41, no. 1, 43-60.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2008). A note on first-order sufficient optimality conditions for Pareto problems. Numer. Funct. Anal. Optim., 29, no. 9-10, 1108-1113.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2008). A set-valued Ekeland’s variational principle in vector optimization. SIAM J. Control Optim. 47, no. 2, 883-903.
HERNÁNDEZ, E., RODRÍGUEZ-MARÍN, L., SAMA, M. (2008). Epiderivatives with respect to half-spaces. Taiwanese J. Math. 12, no. 8, 1965-1978
JIMÉNEZ, B., NOVO, V. (2008). First order optimality conditions in vector optimization involving stable functions. Optimization 57, no. 3, 449-471.
JIMÉNEZ, B., NOVO, V. (2008). Higher-order optimality conditions for strict local minima. Ann. Oper. Res. 157, no. 1, 183-192.
LÓPEZ, R. (2008). Some new existence, sensitivity and stability results for the nonlinear complementarity problem. ESAIM J. Control Optim. Cal. Var. 14, 744-758.
LÓPEZ, R., VERA, C. (2008). On the set of weakly efficient minimizers for convex multiobjective programming. Oper. Res. Lett. 36, 651-655.
MIGLIERINA, E., MOLHO, E., RECCHIONI, M.C. (2008). Box-constrained multi-objective optimization: a gradient-like method without “a priori” scalarization. European J. Oper. Res. 188, no. 3, 662-682.
MIGLIERINA, E., MOLHO, E., ROCCA, M. (2008). Critical points index for vector functions and vector optimization. J. Optim. Theory Appl. 138, no. 2, 479-496.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2008). Epidifferentiability of the map of infima in Hilbert spaces. J. Math. Anal. Appl. 342, no. 1, 371-385.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2008). Tau^w-contingent epiderivatives in reflexive spaces. Nonlinear Anal. 68, no. 12, 3780-3788.
FLORES-BAZÁN, F., JIMÉNEZ, B. (2009). Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48, no. 2, 881-908.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2009). Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems. TOP 17, no. 2, 288-304.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2009). New second order directional derivative and optimality conditions in scalar and vector optimization. J. Optim. Theory Appl. 142, no. 1, 85-106.
HERNÁNDEZ, E., KHAN, A.A., RODRÍGUEZ-MARÍN, L., SAMA, M. (2009). Computation formulas and multiplier rules for graphical derivatives in separable Banach spaces. Nonlinear Anal. 71, no. 9, 4241-4250.
HERNÁNDEZ, E., RODRÍGUEZ-MARÍN, L., SAMA, M. (2009). Scalar multiplier rules in set-valued optimization. Comput. Math. Appl. 57, no. 8, 1286-1293.
HERNÁNDEZ, E., RODRÍGUEZ-MARÍN, L., SAMA, M. (2009). Some equivalent problems in set optimization. Oper. Res. Lett. 37, no. 1, 61-64.
JIMÉNEZ, B., NOVO, V., SAMA, M. (2009). Scalarization and optimality conditions for strict minimizers in multiobjective optimization via contingent epiderivatives. J. Math. Anal. Appl. 352, no. 2, 788-798.
LÓPEZ, R. (2009). Stability results for polyhedral complementarity problems. Comput. Math. Appl. 58, 1475-1486.
MIGLIERINA, E., MOLHO, E. (2009). Sectionwise connected sets in vector optimization. Oper. Res. Lett 37, no. 4, 295-298.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2009). A note on cones associated to Schauder bases. Positivity 13, no. 3, 575-581.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2009). Epidifferentiability and hypodifferentiability of pseudoconvex maps in set-optimization problems. Nonlinear Anal. 71, no. 1-2, 321-331.
SAMA, M. (2009). A set-valued analysis approach to second order differentiation of nonsmooth functions. Set-Valued Anal. 17, no. 1, 41-61.
SAMA, M. (2009). Some remarks on the existence and computation of contingent epiderivatives. Nonlinear Anal. 71, no. 7-8, 2997-3007.
CASINI, E., MIGLIERINA, E. (2010). Cones with bounded and unbounded bases and reflexivity. Nonlinear Anal. 72, no. 5, 2356-2366.
CASINI, E., MIGLIERINA, E. (2010). The geometry of strict maximality. SIAM J. Optim. 20, no. 6, 3146-3160.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2010). On second-order Fritz John type optimality conditions in nonsmooth multiobjective programming. Math. Program. Ser. B 123, no. 1, 199-223.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2010). Optimality conditions via scalarization for a new epsilon-efficiency concept in vector optimization problems. European J. Oper. Res. 201, no. 1, 11-22.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V., THIBAULT, L. (2010). Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle. Nonlinear Anal. 73, no. 12, 3842-3855.
GUTIÉRREZ, C., LÓPEZ, R., NOVO, V. (2010). Generalized epsilon-quasi solutions in multiobjective optimization problems: Existence results and optimality conditions. Nonlinear Anal. 72, no. 11, 4331-4346.
HERNÁNDEZ, E., RODRÍGUEZ-MARÍN, L., SAMA, M. (2010). On solutions of set-valued optimization problems. Comput. Math. Appl. 60, no. 5, 1401-1408.
SAMA, M. (2010). The role of directional compactness in the existence and computation of contingent epiderivatives. J. Math. Anal. Appl. 272, no. 1, 262-272.
BEDNARCZUK, E.M., MIGLIERINA, E., MOLHO, E. (2011). A mountain pass-type theorem for vector-valued functions. Set-Valued Var. Anal. 19, no. 4, 569-587.
FLORES-BAZÁN, F., GUTIÉRREZ, C., NOVO, V. (2011). A Brézis-Browder principle on partially ordered spaces and related ordering theorems. J. Math. Anal. Appl. 375, 245-260.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2011). A generic approach to approximate efficiency and applications to vector optimization with set-valued maps. J. Global Optim. 49, no. 2, 313-342.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2011). Higher order strong convexity and global strict minimizers in multiobjective optimization. J. Convex Anal. 18, no. 1, 85-103.
Desde 2012 hasta 2016
GUTIÉRREZ, C., HUERGA, L., NOVO, V. (2012). Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems. J. Math. Anal. Appl. 389, no. 2, 1046-1058.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2012). Equivalent epsilon-efficiency notions in vector optimization. TOP 20, no. 2, 437-455.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2012). Improvement sets and vector optimization. European J. Oper. Res. 223, no. 2, 304-311.
GUTIÉRREZ, C., MIGLIERINA, E., MOLHO, E., NOVO, V. (2012). Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Anal. 75, no. 4, 1822-1833.
HERNÁNDEZ, E., RODRÍGUEZ-MARÍN, L., SAMA, M. (2012). About Hahn-Banach extension theorems and applications to set-valued optimization. Comput. Math. Appl. 64, no. 6, 1778-1788.
JADAMBA, B., KHAN, A.A., SAMA, M. (2012). Generalized solutions of quasi variational inequalities. Optim. Lett. 6, no. 7, 1221-1231.
JADAMBA, B., KHAN, A.A., SAMA, M. (2012). Regularization for state constrained optimal control problems by half spaces based decoupling. Systems Control Lett. 61, no. 6, 707-713.
KHAN, A.A., SAMA, M. (2012). A multiplier rule for stable problems in vector optimization. J. Convex Anal. 19, no. 2, 525-539.
KHAN, A.A., SAMA, M. (2012). Optimal control of multivalued quasi variational inequalities. Nonlinear Anal. 75, no. 3, 1419-1428.
LÓPEZ, J., LÓPEZ, R., RAMÍREZ, H. (2012). Characterizing Q-linear transformations for semidefinite linear complementarity problems. Nonlinear Anal. TMA. 75, 1441-1448.
LÓPEZ, R. (2012). Approximations of equilibrium problems. SIAM J. Control Optim. 50, no. 2, 1038-1070.
LÓPEZ, R. (2012). Erratum: Approximations of equilibrium problems. SIAM J. Control Optim. 50, no. 6, 3374-3374.
BIANCHI, M., MIGLIERINA, E., MOLHO, E., PINI, R. (2013). Some results on condition numbers in convex multiobjective optimization. Set-Valued Var. Anal. 21, no. 1, 47–65.
CAHILL, N., JADAMBA, B., KHAN, A.A., SAMA, M., WINKLER, B. (2013). A first-order adjoint and a second-order hybrid method for an energy output least-squares elastography inverse problem of identifying tumor location. Bound. Value Probl. 2013, 263, 19 pp.
CASINI, E., MIGLIERINA, E., POLYRAKIS, I.A., XANTHOS, F. (2013). Reflexive cones. Positivity 17, no. 3, 911-933.
GUTIÉRREZ, C., HUERGA, L., JIMÉNEZ, B., NOVO, V. (2013). Proper approximate solutions and epsilon-subdifferentials in vector optimization: Basic properties and limit behaviour. Nonlinear Anal. 79, 52-67.
JIMENEZ, B., NOVO, V., SAMA, M. (2013). An extension of the Basic Constraint Qualification to nonconvex vector optimization problems. J. Global Optim. 56, no. 4, 1755-1771.
KHAN, A.A., SAMA, M. (2013). A new conical regularization for some optimization and optimal control problems: Convergence analysis and finite element discretization. Numer. Funct. Anal. Optim. 34, no. 8, 861-895.
LÓPEZ, J., LÓPEZ, R., RAMÍREZ, H. (2013). Linear complementarity problems over symmetric cones: Characterization of Qb-transformations and existence results. J. Optim. Theory Appl. 159, no. 3, 741-768.
LÓPEZ, R. (2013). Variational convergence for vector valued-functions and its applications to convex multiobjective programming. Math. Meth. Oper. Res. 78, no. 1, 1-34.
RODRÍGUEZ-MARÍN, L., SAMA, M. (2013). Scalar Lagrange multiplier rules for set-valued problems in infinite-dimensional spaces. J. Optim. Theory Appl. 156, no. 3, 683-700.
DOYLEY, M., JADAMBA, B., KHAN, A.A., SAMA, M., WINKLER, B. (2014). A new energy inversion for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of predicting tumor location. Numer. Funct. Anal. Optim. 35, 984-1017.
GUTIÉRREZ, C., HUERGA, L., JIMÉNEZ, B., NOVO, V. (2014). Proper approximate solutions and epsilon-subdifferentials in vector optimization: Moreau-Rockafellar type theorems. J. Convex Anal. 21, no. 3, 857-886.
GUTIÉRREZ, C., LÓPEZ, R., NOVO, V. (2014). Existence and boundedness of solutions in infinite-dimensional vector optimization problems. J. Optim. Theory Appl. 162, no. 2, 515-547.
JADAMBA, B., KHAN, A.A., RUS, G., SAMA, M., WINKLER, B. (2014). A new convex inversion framework for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of predicting tumor location. SIAM J. Appl. Math. 74, no. 5, 1486-1510.
LÓPEZ, J., LÓPEZ, R., RAMÍREZ, H. (2014). A note on the paper: Linear complementarity problems over symmetric cones: Characterization of Qb-transformations and existence results.
GUTIÉRREZ, C., HUERGA, L., NOVO, V., THIBAULT, L. (2015). Chain rules for a proper epsilon-subdifferential of vector mappings. J. Optim. Theory Appl. 167, no. 2, 502-526.
GUTIÉRREZ, C., JIMÉNEZ, B., MIGLIERINA, E., MOLHO, E. (2015). Scalarization in set optimization with solid and nonsolid ordering cones. J. Global Optim. 61, no. 3, 525-552.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2015). Optimality conditions for quasi-solutions of vector optimization problems. J. Optim. Theory Appl. 167, no. 3, 796-820.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V., RUIZ-GARZÓN, G. (2015). Efficiency through variational-like inequalities with Lipschitz functions. Appl. Math. Comput. 259, 438-449.
JARAMILLO, J.A., JIMÉNEZ-SEVILLA, M., RÓDENAS-PEDREGOSA, J.L., SÁNCHEZ-GONZÁLEZ, L. (2015). A class of Hamilton-Jacobi equations on Banach-Finsler manifolds. Nonlin. Anal. 113, 159-179.
CASINI, E., MIGLIERINA, E., PIASECKI, L., VESELY, L. (2016). Rethinking polyhedrality for Lindenstrauss spaces. Israel J. Math. 216, no. 1, 355–369.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2016). Approximate Karush-Kuhn-Tucker condition in multiobjective optimization. J. Optim. Theory Appl. 171, no.1, 70-89.
GUTIÉRREZ, C., HUERGA, L., JIMÉNEZ, B., NOVO, V. (2016). Henig approximate proper efficiency and optimization problems with difference of vector mappings. J. Convex Anal. 23, no. 3, 661-690.
GUTIÉRREZ, C., HUERGA, L., NOVO, V., TAMMER, C. (2016). Duality related to approximate proper solutions of vector optimization problems. J. Global Optim. 64, no. 1, 117-139.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V., RUIZ-GARZÓN, G. (2016). Vector critical points and efficiency in vector optimization with Lipschitz functions. Optim. Lett. 10, no. 1, 47-62.
GUTIÉRREZ, C., LÓPEZ, R., NOVO, V. (2016). On Hadamard well-posedness of families of Pareto optimization problems. J. Math. Anal. Appl. 444, no. 2, 881-899.
GUTIÉRREZ, C., MIGLIERINA, E., MOLHO, E., NOVO, V. (2016). Convergence of solutions of a set optimization problem in the image space. J. Optim. Theory Appl.170, no. 2, 358-371.
GUTIÉRREZ, C., NOVO, V., RÓDENAS-PEDREGOSA, J.L., TANAKA, T. (2016). Nonconvex separation functional in linear spaces with applications to vector equilibria. SIAM J. Optim. 26, no. 4, 2677-2695.
Desde 2017 hasta 2021
CASINI, E., MIGLIERINA, E., PIASECKI, L. (2017). Separable Lindenstrauss spaces whose duals lack the weak∗ fixed point property for nonexpansive mappings. Studia Math. 238, no. 1, 1–16.
CASINI, E., MIGLIERINA, E., PIASECKI, L., POPESCU, R. (2017). Stability constants of the weak∗ fixed point property for the space J. Math. Anal. Appl. 452, no. 1, 673-684.
GUTIÉRREZ, C., HUERGA, L., NOVO, V., THIBAULT, L. (2017). Sequential epsilon-subdifferential calculus for scalar and vector mappings. Set-Valued Var. Anal. 25, no. 2, 383-403.
HERNÁNDEZ, E., LÓPEZ, R. (2017). Some useful set-valued maps in set optimization. Optimization 66, no. 8, 1273-1289.
JADAMBA, B., KHAN, A.A., OBERAI, O., SAMA, M. (2017). First-order and second-order adjoint methods for parameter identification problems with an application to the elasticity imaging inverse problem. Inverse Probl. Sci. Eng. 25, no. 12, 1768-1787.
JADAMBA, B., KHAN, A.A., SAMA, M. (2017). Error estimates for integral constraint regularization of state-constrained elliptic control problems. Comput. Optim. Appl. 67, no. 1, 39–71.
JADAMBA, B., KHAN, A., SAMA, M., TAMMER, C. (2017). On convex modified output least-squares for elliptic inverse problems: stability, regularization, applications, and numerics. Optimization 66, no. 6, 983-1012.
LÓPEZ, R., SAMA, M. (2017). Stability and sensitivity analysis for conical regularization of linearly constrained least-squares problems in Hilbert spaces. J. Math. Anal. Appl. 456, no. 1, 476-495.
CASINI, E., MIGLIERINA, E., PIASECKI, L., POPESCU, R. (2018). Weak* fixed point property in l_1 and polyhedrality in Lindenstrauss spaces. Studia Math. 241, no. 2, 159-172.
GUTIÉRREZ, C., HUERGA, L., JIMÉNEZ, B., NOVO, V. (2018). Approximate solutions of vector optimization problems via improvement sets in real linear spaces. J. Global Optim. 70, no. 4, 875-901.
GUTIÉRREZ, C., HUERGA, L., NOVO, V. (2018). Nonlinear scalarization in multiobjective optimization with a polyhedral ordering cone. Int. Trans. Oper. Res. 25, no. 3, 763-779.
GUTIÉRREZ, C., NOVO, V., RÓDENAS-PEDREGOSA, J.L. (2018). A note on existence of weak efficient solutions for vector equilibrium problems. Optim. Lett. 12, no. 3, 615-623.
GWINNER, J., JADAMBA, B., KHAN, A.A., SAMA, M. (2018). Identification in variational and quasi-variational inequalities. J. Convex Anal. 25, no. 2, 545-569.
JADAMBA, B., KHAN, A.A., KAHLER, R., SAMA, M. (2018). Elliptic inverse problems of identifying nonlinear parameters. Pure and Applied Functional Analysis, 3, no. 2, 309-326.
JIMENEZ, B., NOVO, V., VÍLCHEZ, A. (2018). A set scalarization function based on the oriented distance and relations with other set scalarizations. Optimization 67, no. 12, 2091-2116.
CAPRARI E., CERBONI BAIARDI L., MOLHO E. (2019). Primal worst and dual best in robust vector optimization, European J. Oper. Res. 275, no. 3, 830-838.
CLASON, C., KHAN, A., SAMA, M., TAMMER, C. (2019). Contingent derivatives and regularization for noncoercive inverse problems. Optimization 68, no. 7, 1337-1364.
DE BERNARDI, C.A., MIGLIERINA E., MOLHO E. (2019). Stability of a convex feasibility problem. J. Global Optim. 75 , no. 4, 1061-1077.
GUTIÉRREZ, C. (2019). Optimality conditions for weak solutions of vector optimization problems through quasi interiors and improvement sets. J. Nonlinear Convex Anal. 20, no. 12, 2507-2523.
GUTIÉRREZ, C., HUERGA, L., NOVO, V., SAMA, M. (2019). Limit behavior of approximate proper solutions in vector optimization. SIAM J. Optim. 29, no. 4, 2677-2696.
HAI, L.P., HUERGA, L., KHANH, P.Q., NOVO, V. (2019). Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems. J. Global Optim. 74, no. 2, 361-382.
HERNÁNDEZ, H., LÓPEZ, R. (2019). About asymptotic analysis and set optimization. Set-Valued Var. Anal. 27, 643-664.
HUERGA, L., JADAMBA, B., SAMA, M. (2019). An extension of the Kaliszewski cone to non-polyhedral pointed cones in infinite-dimensional spaces. J. Optim. Theory Appl. 181, no. 2, 437-455.
JADAMBA, B., KHAN, A.A., LÓPEZ, R., SAMA, M. (2019). Conical regularization for multi-objective optimization problems. J. Math. Anal. Appl. 68, no. 2, 2056-2075.
JADAMBA, B., KHAN, A., SAMA, M. (2019). Stable conical regularization by constructible dilating cones with an application to Lp-constrained optimization problems. Taiwanese J. Math. 23, no. 4. 1001-1023.
KHAN, A.A., MIGORSKI, S., SAMA, M. (2019). Inverse problems for multi-valued quasi variational inequalities and noncoercive variational inequalities with noisy data. Optimization 68, no. 10, 1897-1931.
LARA, F., LÓPEZ, R., SVAITER, B.F. (2019). A further study on asymptotic functions via variational analysis. J. Optim. Theory Appl. 182, 366-382.
BAO, T.Q., HUERGA, L., JIMÉNEZ, B., NOVO, V. (2020). Necessary conditions for nondominated solutions in vector optimization. J. Optim. Theory Appl. 186, no. 3, 826-842.
GUTIÉRREZ, C., HUERGA, L., JIMÉNEZ, B., NOVO, V. (2020). Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones. TOP 28, no. 2, 526-544
GUTIÉRREZ, C., LÓPEZ, R. (2020). On the existence of weak efficient solutions of nonconvex vector optimization problems. J. Optim. Theory Appl. 185, no. 3, 880–902.
HERNÁNDEZ, E., LÓPEZ, R. (2020). A new notion of semicontinuity of vector functions and its properties. Optimization 69, no. 7-8, 1831-1846.
JADAMBA, B., KHAN, A.A., RICHARDS M., SAMA, M. (2020). A convex inversion framework for identifying parameters in saddle point problems with applications to inverse incompressible elasticity. Inverse Problems 36, no. 7, 074003, 25 pp.
JADAMBA, B., KHAN, A., RICHARDS M., SAMA, M., TAMMER, C. (2020). Analyzing the role of the Inf-Sup condition for parameter identification in saddle point problems with application in elasticity imaging regularization. Optimization 69. no. 12, 2577-2610.
JADAMBA, B., KHAN, A.A., SAMA, M., TAMMER, C. (2020). Contingent derivatives of the set-valued solution map of a noncoercive saddle point problem. A cross-fertilization between variational analysis and inverse problems. J. Nonlinear Var. Anal. 4, no. 1, 127-134.
JIMENEZ, B., NOVO, V., VÍLCHEZ, A. (2020). Characterization of set relations through extensions of the oriented distance. Math. Methods Oper. Res. 91, no. 1, 89-115.
JIMÉNEZ, B., NOVO, V., VÍLCHEZ, A. (2020). Six set scalarizations based on the oriented distance: properties and application to set optimization. Optimization 69, no. 3, 437-470.
JIMÉNEZ, B., NOVO, V., VÍLCHEZ, A. (2020). Six scalarizations based on the oriented distance in set optimization: strict monotonicity and weak minimality. J. Nonlinear Convex Anal. 21, no. 11, 2433-2457.
LÓPEZ, R. (2020). Global stability of interval optimization problems. Optimization 69, no. 11, 2431-2451.
AGUIRRE-CIPE, I., LÓPEZ, R., MALLEA-ZEPEDA, E., VÁSQUEZ, L. (2021). A study of interval optimization problems. Optim. Lett. 15, no. 3, 859-877.
AN, D.T.V., GUTIÉRREZ, C. (2021). Differential stability properties in convex scalar and vector optimization. Set-Valued Var. Anal. 29, no. 4, 893-914.
CASINI E., MIGLIERINA E., PIASECKI L. (2021). Weak * fixed point property and the space of affine functions, Proc. Amer. Math. Soc. 149, no. 4, 1613-1620.
DE BERNARDI C.A., MIGLIERINA E. (2021). A variational approach to the alternating projections method, J. Glob. Optim., 81, no. 2, 323–350.
DE BERNARDI C.A. (2021). A note on point-finite coverings by balls, Proc. Amer. Math. Soc., 149, no. 8, 3417–3424.
GUTIÉRREZ, C., HUERGA, L., KÖBIS, E., TAMMER, C. (2021). A scalarization scheme for binary relations with applications to set-valued and robust optimization. J. Global Optim. 79, 233-256.
GUTIÉRREZ C., LÓPEZ R., MARTÍNEZ J. (2021). Generalized epsilon-quasi solutions of set optimization problems. J. Global Optim. 82, no. 3, 559-576.
HUERGA, L., JIMÉNEZ, B., LUC, D.T., NOVO, V. (2021). A unified concept of approximate and quasi efficient solutions and associated subdifferentials in multiobjective optimization. Math. Program. Series B 189, no. 1-2, 379-407.
HUERGA, L., JIMÉNEZ, B., NOVO, V., VÍLCHEZ, A. (2021). Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization. Math. Methods Oper. Res. 93, no. 2, 413-436.
JADAMBA, B., KHAN, A., SAMA, M., STARKLOFF, H-J., TAMMER, C. (2021). A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation. SIAM/ASA J. Uncertainty Quantification, 9, no 2, 922–952.
JADAMBA, B., KHAN, A., SAMA, M., YANG. Y. (2021). An Iteratively Regularized Stochastic Gradient Method for Estimating a Random Parameter in a Stochastic PDE. A Variational Inequality Approach, Nonlinear Var. Anal. 5, No. 6, 865-880.
JIMÉNEZ, B., NOVO, V., VÍLCHEZ, A. (2021). Two set scalarizations based on the oriented distance with variable ordering structures: properties and application to set optimization. Numer. Funct. Anal. Optim. 42, no. 12, 1367-1392.
KHAN, A.A., SAMA, M. (2021). Stability analysis of conically perturbed linearly constrained least-squares problems by optimizing the regularized trajectories. Optim. Lett. 15, no. 6, 2127-2145.
LÓPEZ, R., SAMA, M. (2021). Horizon maps and graphical convergence revisited. SIAM J. Optim. 31, no. 2, 1330-1351.
NOVO, V., ZALINESCU, C. (2021). On relatively solid convex cones in real linear spaces. J. Optim. Theory Appl. 188, no. 1, 277-290.
Desde 2022 hasta la actualidad
ARIAS, J., KHAN, A., RODRÍGUEZ-URÍA, J., SAMA, M. (2022). Analysis of smart thermostat thermal models for residential building. Appl. Math. Model. 110, 241-261.
CAPRARI E., CERBONI BAIARDI L., MOLHO E. (2022). Scalarization and robustness in uncertain vector optimization problems: a non componentwise approach.J. Global Optim. 84, 295-320.
DE BERNARDI C.A., MIGLIERINA E. (2022). Regularity and Stability for a Convex Feasibility Problem, Set-Valued Var. Anal. 30, no.2, 521-542.
HERNÁNDEZ, E., LÓPEZ, R. (2022). On epi-convergence for set-valued maps, Optimization 71, no. 2, 403-417.
HERNÁNDEZ, E., LÓPEZ, R. (2022). Stability in set-valued optimization problems using asymptotic analysis and epi-convergences. Appl. Math. Optim. 86, no. 1, art. no. 77.
HUERGA, L., JIMÉNEZ, B., NOVO, V. (2022). New notions of proper efficiency in set optimization with the set criterion. J. Optim. Theory Appl. 195, no. 3, 878-902.
HUNG, N.V., NOVO, V., TAM, V.M. (2022). Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone. J. Global Optim. 82, no. 1, 139-159.
Publicaciones online
BAO, T.Q., GUTIÉRREZ, C. (2022). Ekeland variational principles for vector equilibrium problems, Optimization, online. DOI: 10.1080/02331934.2022.2094264.
HUERGA, L., JIMÉNEZ, B., NOVO, V., VÍLCHEZ, A. (2022). Continuity of a scalarization in vector optimization with variable ordering structures and application to convergence of minimal solutions. Optimization, online. DOI: 10.1080/02331934.2022.2081569.
KHAN, A.A., SAMA, M. (2022). Error estimates for halfspace regularization of state constrained multiobjective elliptic control problems. Optimization, online. DOI: 02331934.2022.2154605.
LÓPEZ, R., SAMA, M. (2022). A study of multivalued variational inequalities via horizon maps and graphical convergence. Optimization, online. DOI: 10.1080/02331934.2022.2060104.
B) Otras publicaciones
Desde 2002 hasta 2006
MIGLIERINA, E., MOLHO, E., ZAFFARONI, A. (2002). Different solutions in vector optimization: a characterization by a special scalarization. Optimization in economics, finance and industry (Verona, 2001), 185-198, Datanova, Milan.
MIGLIERINA, E. (2003). Stability of critical points for vector valued functions and Pareto efficiency. J. Inf. Optim. Sci. 24, no. 2, 413-422
MIGLIERINA, E., MOLHO, E. (2003). Generalized convexity and well-posedness in vector optimization. In Recent advances in optimization, Proceedings of the Workshop on Optimization held in Varese, June 13-14, 2002. Edited by G. P. Crespi, A. Guerraggio, E. Miglierina and M. Rocca, 131-138, Datanova, Milan.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2004). Minimum principle-type optimality conditions for Pareto problems. Int. J. Pure Appl. Math. 10, no. 1, 51-68.
GUERRAGGIO, A., MOLHO, E. (2004). The origins of quasi-concavity: a development between mathematics and economics. Historia Math. 31, no. 1, 62-75
NOVO, V., JIMÉNEZ, B. (2004). Lagrange multipliers in multiobjective optimization under mixed assumptions of Fréchet and directional differentiability. Investigación Operacional 25, no.1, 34-47.
ADÁN, M., NOVO, V. (2005). Duality and saddle-points for convex-like vector optimization problems on real linear spaces. TOP 13, no. 2, 343-357.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2005). A new concept of approximate efficiency in multiobjective mathematical programming. Proceedings of Operational Research Peripatetic Postgraduate Programme Meeting (ORP3), C. Maroto et al. Eds. ESMAP, S.L., 65-74.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2005). Conditions for epsilon-Pareto Solutions in Multiobjective Optimization. Proceedings of the International Workshop on Global Optimization GO05, I. García et al. Eds. 2005, 121-125.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2006). Conditions and parametric representations of approximate minimal elements of a set through scalarization. In Large-Scale Nonlinear Optimization. G. Di Pillo, M. Roma eds. Nonconvex Optim. Appl. 83, 173-184. Springer.
HERNÁNDEZ, E., JIMÉNEZ, B., NOVO, V. (2006). Benson proper efficiency in set-valued optimization on real linear spaces. In Recent Advances in Optimization. A. Seeger (ed.), Lecture Notes Econom. Math. Systems 563, 45-59. Springer.
NOVO, V. (2006). El problema de optimización vectorial. Conceptos de optimalidad. Boletín de la SEIO, 22, no. 4, 16-21.
Desde 2007 hasta 2011
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2007). Sufficient optimality conditions and duality in nonsmooth multiobjective optimization problems under generalized convexity. Generalized Convexity and Related Topics. I.V. Konnov, D.T. Luc and A.M. Rubinov eds., Lecture Notes Econom. Math. Systems 583, 265-278. Springer.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2007). Optimality conditions for Tanaka’s approximate solutions in vector optimization. Generalized Convexity and Related Topics. I.V. Konnov, D.T. Luc and A.M. Rubinov eds., Lecture Notes Econom. Math. Systems 583, 279-295. Springer.
MIGLIERINA, E., MOLHO, E., PATRONE, F., TIJS, S.H. (2008). Axiomatic approach to approximate solutions in multiobjective optimization. Decis. Econ. Finance 31, no. 2, 95-115.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2009). Some applications of invexity and generalized invexity to Pareto optimization problems. Int. J. Optim: Theory Meth. Appl. 1, no. 1, 1-14.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2010). An overview of second order tangent sets and their application in vector optimization. Bol. Soc. Esp. Mat. Apl. 52, 73-96.
JADAMBA, B., KHAN, A.A., SAMA, M. (2011). Inverse problems of parameter identification in partial differential equations. Mathematics in science and technology, 228-258, World Sci. Publ., Hackensack, NJ.
Desde 2012 hasta 2016
JADAMBA, B., KHAN, A.A., PAULHAMUS, M., SAMA, M. (2012). Proximal point methods for the inverse problem of identifying parameters in beam models. AIP Conf. Proc. 1463, 16-38.
GIORGI, G., JIMÉNEZ, B., NOVO, V. (2014). Some notes on approximate optimality conditions in scalar and vector optimization problems. Working paper, Università di Pavia, Department of Economics and Management, 95, 17 pp. ISSN: 2281-1346.
GUTIÉRREZ, C., HUERGA, L. (2014). Approximate solutions of multiobjective optimization problems. Bol. Estad. Investig. Oper. 30, no. 1, 30-48.
GUTIÉRREZ, C., JIMÉNEZ, B., MIGLIERINA, E., MOLHO, E. (2015). Scalarization of set-valued optimization problems in normed spaces. In “Modelling, Computation and Optimization in Information Systems and Management Sciences, Proceedings of MCO 2015”, Le Thi Hoai An, Pham Dinh Tao, Nguyen Ngoc Thanh (Eds.), Springer, Advances in Intelligent Systems and Computing 359, 505-512.
GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2015). Nonlinear scalarizations of set optimization problems with set orderings. In “Set Optimization and Applications. The State of the Art”, A. Hamel, F. Heyde, A. Löhne, B. Rudloff, C. Schrage (Eds.), Springer, Proceedings in Mathematics & Statistics, vol. 151, 43-63.
HUERGA, L., GUTIÉRREZ, C., JIMÉNEZ, B., NOVO, V. (2015). Approximation of weak efficient solutions in vector optimization. In “Modelling, Computation and Optimization in Information Systems and Management Sciences, Proceedings of MCO 2015”, Le Thi Hoai An, Pham Dinh Tao, Nguyen Ngoc Thanh (Eds.), Springer, Advances in Intelligent Systems and Computing 359, 481-489.
CHO, M., JADAMBA, B., KHAN, A. A., OBERAI, A. A., SAMA, M. (2016). Identification in mixed variational problems by adjoint methods with applications. In Modeling and Optimization: Theory and Applications. Springer, Cham, 65-84.
Desde 2017 hasta 2021
CHO, M., JADAMBA, J., KAHLER, R., KHAN, A.A, SAMA, M. (2017). First-order and second-order adjoint methods for the inverse problem of identifying non-linear parameters in PDEs. In P. Manchanda et al. (eds.), Industrial Mathematics and Complex Systems, Industrial and Applied Mathematics, Chapter 9, Springer, ISBN 978-981-10-3757-3.
CHO, M., KHAN, A. A., MALYSHEVA, T., SAMA, M., WHITE, L. (2018). Stability analysis of the inverse problem of parameter identification in mixed variational problems. In Applications of Nonlinear Analysis. Springer, Cham, 61-100.
GUTIÉRREZ, C. (2019). Ekeland variational principles for vector equilibrium problems with solid ordering cones. J. Appl. Numer. Optim. 31, no. 1, 253-265.
HAO. D. N., KHAN, A. A., SAMA, M., TAMMER, C. (2019). Inverse problems in variational inequalities by minimizing energy. Pure Appl. Funct. Anal. 4, no. 2, 247-269.
HUERGA, L., KHAN, A., SAMA, M. (2019). A Henig conical regularization approach for circumventing the Slater conundrum in linearly l_+^p-constrained least squares problems. J. Appl. Numer. Optim. 1, no. 2, 117-129.
JADAMBA, B., KHAN, A.A., SAMA, M., TAMMER, C. (2019). Regularization methods for scalar and vector control problems. Variational Analysis and Set Optimization: Developments and Applications in Decision Making, 296, 298-315. CRC Press.
GUTIÉRREZ, C. (2020). Approximate proper solutions in vector equilibrium problems: limit behavior and linear scalarization results. Vietnam J. Math. 48, no. 3, 425-437.
HUERGA, L., JIMÉNEZ, B., NOVO, V. (2020). Lagrange multipliers in convex set optimization with the set and vector criteria. Vietnam J. Math. 48, no. 2, 345-362.
GRESKSCH. W., JADAMBA, B., KHAN, A. A., SAMA, M., TAMMER, C. (2021). Inverse problem of estimating the stochastic flexural rigidity in fourth-order models. Pure Appl. Funct. Anal., 6, no. 6, 1273-1301.
HAWKS, R., JADAMBA, B., KHAN, A. A., SAMA, M., YANG, Y. (2021). A variational inequality based stochastic approximation for inverse problems in stochastic partial differential equations. Springer, Nonlinear Analysis and Global Optimization, 207-226.
JADAMBA, B., KHAN, A. A., KOLT, Q., SAMA, M. (2021). An equation error approach for identifying a random parameter in a stochastic partial differential equation. CRC Press, Deterministic and Stochastic Optimal Control and Inverse Problems, 354-378.
JADAMBA, B., KHAN, A.A., SAMA, M. (2021). A regularized stochastic subgradient projection method for an optimal control problem in a stochastic partial differential equation. Mathematical Analysis in Interdisciplinary Research, 417-429. Springer, Cham.
Desde 2022 hasta la actualidad
DAMBRINE, M., KHAN, A.A., SAMA M.A (2022). Stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations. Phil. Trans. R. Soc. A 380, 20210352. DOI: 10.1098/rsta.2021.0352.
JADAMBA, B., KHAN, A.A., RACITI, F., SAMA, M. (2022). A variational inequality based stochastic approximation for estimating the flexural rigidity in random fourth-order models. Communications in Nonlinear Science and Numerical Simulation 111, art. 106406. DOI: 10.1016/j.cnsns.2022.106406.