Universidad Nacional de Educación a Distancia » LAUNIVERSIDAD » Facultades y Escuelas » Facultad de Ciencias » Personal Docente » ANA MARIA PORTO FERREIRA DA SILVA

Ana Maria Porto Ferreira da Silva

Doctora en Matemáticas, especialidad Topología y Geometría por la Universidad de Ginebra, Suiza

Profesora Titular de Universidad

Correo electrónico: asilva"at"mat.uned.es

Tfno: 913987233

Dirección:

Departamento de Matemáticas Fundamentales

Facultad de Ciencias, UNED

C. Senda del Rey, 9

28040 Madrid

España

- Docencia

Grado en Matemáticas:

- Geometría Básica

- Geometría Diferencial de Curvas y Superficies

- Geometría Diferencial

- Trabajo fin de grado

- Investigación

- Proyecto de investigación: MTM2014-55812-P

- Artículos:

Porto F. da Silva, Ana Maria On the homotopy and equivalence of locally (G,Γ)-principal pseudogroups. Arch. Math. (Basel) 60 (1993), no. 5, 482–488.

da Silva, Ana Maria Porto Ferreira Classification des pseudogroupes localement (G,Γ)-principaux. (French) [Classification of locally (G,Γ)-principal pseudogroups] C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 6, 463–466.

Silva, Ana Maria F. Atiyah sequences and complete closed pseudogroups preserving a local parallelism. Holomorphic dynamics (Mexico, 1986), 302–316, Lecture Notes in Math., 1345, Springer, Berlin, 1988

Costa, Antonio F.; Izquierdo, Milagros; Porto, Ana M. On the connectedness of the branch loci of moduli spaces of orientable Klein surfaces. Geom. Dedicata 177 (2015), 149–164.

Costa, Antonio F.; Izquierdo, Milagros; Porto, Ana M. Maximal and non-maximal NEC and Fuchsian groups uniformizing Klein and Riemann surfaces. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces, 107–118, Contemp. Math., 629, Amer. Math. Soc., Providence, RI, 2014.

Costa, Antonio Félix; Porto, Ana Maria Visualizing automorphisms of Riemann surfaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 58 (2011), 121–127 (2012).

Bartolini, Gabriel; Costa, Antonio F.; Izquierdo, Milagros; Porto, Ana M. On the connectedness of the branch locus of the moduli space of Riemann surfaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104 (2010), no. 1, 81–86.

Bujalance, José A.; Costa, Antonio F.; Porto, Ana M. On the connectedness of the locus of real elliptic-hyperelliptic Riemann surfaces. Internat. J. Math. 20 (2009), no. 8, 1069–1080.

Costa, A. F.; Natanzon, S. M.; Porto, A. M. Counting the regular coverings of surfaces using the center of a group algebra. European J. Combin. 27 (2006), no. 2, 228–234.

Costa, Antonio F.; Porto, Ana M. On two recent geometrical characterizations of hyperellipticity. Rev. Mat. Complut. 17 (2004), no. 1, 59–65. 30F20 (30F10 30F35)

Bujalance, José A.; Costa, Antonio F.; Porto, Ana M. On the topological types of symmetries of elliptic-hyperelliptic Riemann surfaces. Israel J. Math. 140 (2004), 145–155.

Bujalance, José A.; Costa, Antonio F.; Porto, Ana M. Topological types of symmetries of elliptic-hyperelliptic Riemann surfaces and an application to moduli spaces. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 1, 69–72.

Costa, Antonio F.; Porto, Ana M. Sur des invariants galoisiens des revêtements ramifiés. (French) [On some Galois invariants of branched coverings] C. R. Math. Acad. Sci. Paris 334 (2002), no. 10, 899–902

Costa, Antonio F.; Porto, Ana M. On anticonformal automorphisms of order >2 of Riemann surfaces. Complex geometry of groups (Olmué, 1998), 89–96, Contemp. Math., 240, Amer. Math. Soc., Providence, RI, 1999.

Porto Ferreira da Silva, A. M.; Costa, A. F. On the automorphism group of the canonical double covering of bordered Klein surfaces with large automorphism group. Algebra, 3. J. Math. Sci. 82 (1996), no. 6, 3773–3779.