GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES TERCER CURSO

GUÍA DE ESTUDIO PÚBLICA

FUNDAMENTOS DE INGENIERÍA NUCLEAR

CÓDIGO 6890308-

"Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

17-18

FUNDAMENTOS DE INGENIERÍA NUCLEAR CÓDIGO 6890308-

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN
REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA
EQUIPO DOCENTE
TUTORIZACIÓN Y SEGUIMIENTO
TUTORIZACIÓN EN CENTROS ASOCIADOS
COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE
RESULTADOS DE APRENDIZAJE
CONTENIDOS
METODOLOGÍA
SISTEMA DE EVALUACIÓN
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
RECURSOS DE APOYO Y WEBGRAFÍA

digo Seguro de Verritadado (CSV)" en la dirección https://sede.uned.es/valida/

UNED 2 CURSO 2017/18

Nombre de la asignatura FUNDAMENTOS DE INGENIERÍA NUCLEAR

6890308-Código 2017/2018 Curso académico

INGENIERÍA ENERGÉTICA Departamento

Títulos en que se imparte | GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES (grado

GRADO EN INGENIERÍA EN TECNOLOGIAS INDOSTRIALES (SE SELECCIONADO) - TIPO: OBLIGATORIAS - CURSO: TERCER CURSO | GRADO EN INGENIERÍA MECÁNICA - TIPO: OPTATIVAS - CURSO: CUARTO CURSO | GRADO EN INGENIERÍA ELÉCTRICA - TIPO: OPTATIVAS - CURSO: CUARTO CURSO

Nº ETCS 5 Horas 125.0

Periodo SEMESTRE 2 **CASTELLANO** Idiomas en que se imparte

PRESENTACIÓN Y CONTEXTUALIZACIÓN

La asignatura de Fundamentos de Ingeniería Nuclear es común a tres de los grados de ingeniería que se imparten en la ETS Ingenieros Industriales de la UNED, tiene sin carácter obligatorio en uno de ellos (Grado en Ingeniería en Tecnologías Industriales), y optativo en los otros dos (Grado en Ingeniería Mecánica y Grado en Ingeniería Eléctrica).

El objetivo general de su impartición es motivar al estudiante en su interés por el conocimiento de los procesos nucleares y en las aplicaciones o tecnologías que basados en las mismos se han desarrollado, o están en fase de desarrollo, dirigidos a sustentar el bienestar de nuestro planeta y de todos sus habitantes, y que abarcan no solo opciones energéticas (desde las tradicionales a las nuevas tendentes a la sostenibilidad), sino también las no energéticas, tales como la de salud humana, y otras muchas no considerados en el curso como la agricultura, la alimentación, etc.

De acuerdo con lo mencionado, los contenidos de la asignatura pueden considerarse organizados en dos partes. En la primera de ellas (la cual incluye los contenidos del Bloque 1 de la signatura) se estudian los conceptos y principios básicos de la fenomenología de los procesos nucleares y de la producción e interacción de las radiaciones ionizantes. Esta primera parte es la que podríamos considerar una introducción a los temas fundamentales de la ciencia nuclear. La segunda parte (que incluye los Blogues 2, 3,4 y 5 de la asignatura) se orienta a describir y fundamentar las tecnologías que sustentan las principales aplicaciones de los procesos nucleares y las radiaciones. Esta parte es la que podríamos considerar como una introducción a las distintas tecnologías nucleares y de aplicación de la radiación. A este respecto se presta especial atención a las aplicaciones energéticas de los procesos nucleares, y para ello se describe la fuente de energía de fisión nuclear y distintas tecnologías concebidas para explotar su aprovechamiento, desde las actuales a las avanzadas y todavía no implementadas. También se introducen las bases de la fuente de energía de fusión nuclear y de algunas de las tecnologías más prometedoras encaminadas a lograr su aprovechamiento para la producción de energía eléctrica. Por otra parte, se aborda también el estudio de las aplicaciones no energéticas, orientadas a campos tales como la industria, la investigación y sobre todo la medicina.

En el curso se subraya la idea de que, si bien las aplicaciones de las reacciones nucleares y la radiación son potencialmente muy beneficiosas, desgraciadamente no están exentas de

en la "Código Seguro de Verificación (CSV)" <u>_</u>

UNED CURSO 2017/18 3

este documento puede ser verificada mediante validez e integridad de GUI - La autenticidad, riesgos, debidas a la presencia de productos radiactivos y radiaciones que pueden interaccionar con la naturaleza y las personas, y producir daños biológicos. En este contexto se introducen los conceptos fundamentales de la cultura de la seguridad nuclear, se plantean las estrategias ligadas a la gestión de los posibles residuos radiactivos que se generan en las distintas aplicaciones, y se presentan algunas de las cuestiones a tener en cuenta para evaluar las posibilidades de alcanzar una energía nuclear sostenible.

En el contexto de la I+D+i, señalar que dentro de los grandes retos hacia los que se quiere orientar la actividad de I+D+i en Europa y España durante los próximos años, las aplicaciones de los procesos nucleares y las fuentes de radiación tienen una cabida muy significativa en varios de ellos. Ver a este respecto documentos sobre:

- 1. EU research and innovation framework programme, Horizon 2020 (2014-2020)
- 2. European Atomic Energy Community (EURATOM) programme for nuclear research and training activities, H2020 EURATOM programme (2014-2018).
- 3. Estrategia Española de Ciencia y Tecnología y de Innovación (2013-2020)
- 4. Plan Estatal de Investigación Científica y Técnica y Plan Estatal de Innovación (2013-

Como en ellos puede observarse, las contribuciones esperadas a los retos de energía y salud son muy relevantes.

A nivel contextual, merece la pena también hacer constar dos tipos de hechos: i) en España más del 20% de la energía eléctrica producida durante los últimos años ha sido de origen nuclear, en concreto, en el último año, año el 2016, ha sido de 21,7%, formando parte de la denominada energía de base, y ii) el enorme avance que en medicina han supuesto la gran variedad de pruebas de diagnóstico y tratamiento basadas en las propiedades nucleares de la materia.

Además, la Unión Europea consciente de la necesidad de la conservación y actualización de las competencias en el ámbito nuclear, y ante el riesgo real de pérdida de competencias nucleares para Europa, ha tomado medidas que se han concretado en la potenciación de la creación de Asociaciones de carácter europeo que hagan de interlocutores para dar respuesta a estas demandas, así como a lanzar Proyectos enmarcados dentro de los últimos Framework Programmes for Research and Technological Development, denominados de forma abreviada, Framework Programmes, FP. El anterior fue el FP7 y el actual que sería el "FP8" se denomina "Horizon 2020".

Las dos asociaciones europeas más importantes son FuseNet (The European Fusion Education Network) y ENEN (The European Nuclear Education Network), la primera dedicada a la educación de la ciencia y tecnologías de la fusión nuclear, y la segunda dedicada a a la educación de la ciencia y tecnologías nucleares restañes, fundamentalmente las concernientes a las tecnologías de fisión nuclear presentes y futuras, y a las basadas en las aplicaciones de las radiaciones ionizantes, y entre ellas y sobre todo a la medicina. Por lo que a proyectos europeos se refiere, los que actualmente se centran en la educación de la ciencia y tecnología nuclear en sentido amplio, encuadrados dentro de Horizonte 2020, son: ANNETTE (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) y ENEN PLUS (Attract, Retain and Develop New Nuclear Talents Beyond Academic Curricula).

UNED CURSO 2017/18 4

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante

La UNED, bajo la responsabilidad de los profesores de esta asignatura, es miembro desatacado de estas Asociaciones y Proyectos europeos, lo que de gran valor para los estudiantes que quieran iniciarse en la ciencia y tecnología nuclear en la UNED por lo que seguidamente comentamos.

Las Redes/Asociaciones Europeas de Formación Nuclear y los Proyectos Europeos de Formación Nuclear arriba indicados suministran una plataforma para la coordinación, integración y mejora de la educación y la formación europeas sobre la distintas Tecnologías nucleares y ciencia nuclear que las sustenta, la iniciación, desarrollo e implementación de nuevas actividades dentro del marco de la UE, y para el intercambio y diseminación de la información sobre educación en las distintas tecnologías nucleares y en la movilidad de estudiantes de grado, máster y doctorado. En consecuencia, nuestros estudiantes podrían disponer de fondos para movilidad y además se les posibilita la obtención de certificados internacionales con la realización de unos pocos créditos adicionales en otras instituciones que formen parte de las Redes mencionadas, tales como por el Master Europeo de Ciencia en Ingeniería Nuclear.

Esta asignatura le servirá de puerta de entrada si quisiera abordar la Especialidad de INGENIERÍA NUCLEAR del Máster Universitario en INGENIERÍA INDUSTRIAL, así como también posteriormente el Doctorado en TECNOLOGÍAS INDUSTRIALES, para el que nuestro equipo de investigación del área de Ingeniería Nuclear del Departamento de ingeniería Energética de la UNED (grupo TECF3IR), con una reconocida calidad a nivel internacional, podría dirigirle su tesis doctoral dentro del ámbito nuclear.

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA **ASIGNATURA**

Los conocimientos de física, cálculo y ecuaciones diferenciales que el alumno habrá adquirido cursando las asignaturas del grado correspondiente.

Manejo de herramientas informáticas básicas para efectuar las prácticas de simulación a distancia vía Internet

EQUIPO DOCENTE

MIREIA PIERA CARRETE Nombre y Apellidos Correo Electrónico mpiera@ind.uned.es

Teléfono 91398-6471

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

INGENIERÍA ENERGÉTICA Departamento

MERCEDES ALONSO RAMOS Nombre y Apellidos

Correo Electrónico malonso@ind.uned.es

Teléfono 91398-6464

ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Facultad

INGENIERÍA ENERGÉTICA Departamento

Nombre y Apellidos PATRICK SAUVAN -Correo Electrónico psauvan@ind.uned.es

91398-8731 Teléfono

validez e integridad de este documento puede ser verificada mediante Verificación (CSV)" GUI - La autenticidad, "Código Seguro de

UNED CURSO 2017/18 5

ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Facultad

INGENIERÍA ENERGÉTICA Departamento

JAVIER SANZ GOZALO Nombre y Apellidos Correo Electrónico jsanz@ind.uned.es Teléfono 91398-6463

Facultad ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES

INGENIERÍA ENERGÉTICA Departamento

FRANCISCO M. OGANDO SERRANO Nombre y Apellidos

Correo Electrónico fogando@ind.uned.es

Teléfono 91398-8223

ESCUELA TÉCN.SUP INGENIEROS INDUSTRIALES Facultad

INGENIERÍA ENERGÉTICA Departamento

TUTORIZACIÓN Y SEGUIMIENTO

La tutorización se realizará fundamentalmente en línea, mediante la participación en los Foros de Debate de la plataforma aLF, si bien también pueden enviarse desde esta misma plataforma correos personales a los distintos profesores del equipo docente.

La tutorización se realizará fundamentalmente en línea, mediante la participación en los Foros de Debate de la plataforma aLF, si bien también pueden enviarse desde esta misma plataforma correos personales a los distintos profesores del equipo docente.

Además el equipo docente de la asignatura tiene asignados unos días de guardia donde el alumno podrá contactar personalmente o por teléfono con los profesores y consultarles lo que considere oportuno para resolver las dudas que se le planteen en el estudio de la asignatura. A continuación se da la información para contactar con los profesores, indicando en cada bloque temático el profesor responsable.

Bloque 1

Profesor: D. Javier Sanz Gozalo Horario de guardia: Jueves de 16 a 20 horas

Teléfono: 913986463

Despacho: 2.18

Correo electrónico: jsanz@ind.uned.es

Bloque 2

Profesor: Dña. Mireia Piera Carreté

Horario de guardia: Lunes de 16 a 20 horas

Teléfono: 913986471

Despacho: 2.21

Correo electrónico: mpiera@ind.uned.es

UNED CURSO 2017/18 6

Bloque 3

Profesor: D. Francisco Ogando Serrano

Horario de guardia: Jueves de 10 a 14 horas

913988223 Teléfono:

Despacho: 0.15

Correo electrónico: fogando@ind.uned.es

Bloque 4

Profesor: Da. Mercedes Alonso Ramos

Horario de guardia: Martes de 15 a 19 horas

913986464 Teléfono:

Despacho: 0.18

Correo electrónico: malonso@ind.uned.es

Bloque 5

Patrick Sauvan Profesor: D.

Horario de guardia: Jueves de 16 a 20 horas

Teléfono: 913988731

Despacho: 0.16

Correo electrónico: psauvan@ind.uned.es

TUTORIZACIÓN EN CENTROS ASOCIADOS

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

COMPETENCIAS GENERALES

- •Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- •Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.
- •Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planes de labores y otros trabajos análogos.
- •Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
- •Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas.

UNED 7 CURSO 2017/18

- •Capacidad para aplicar los principios y métodos de la calidad.
- •Capacidad de organización y planificación en el ámbito de la empresa, y otras instituciones y organizaciones.
- •Capacidad de trabajar en un entorno multilingüe y multidisciplinar.
- •Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Técnico Industrial.
- •Comprensión de textos técnicos en lengua inglesa.
- •Comunicación y expresión matemática, científica y tecnológica.
- •Manejo de las tecnologías de la información y comunicación (TICs).
- •Capacidad para gestionar información.
- •Integración de conocimientos transversales en el ámbito de las tecnologías industriales.

COMPETENCIAS ESPECÍFICAS

- •Conocimientos y capacidades para fundamentar el uso de los procesos nucleares para aplicaciones energéticas y no energéticas
- •Conocimientos y capacidades para entender el principio de funcionamiento de tecnologías nucleares comercializadas y en desarrollo para producción de electricidad y para aplicaciones en medicina e industria.

RESULTADOS DE APRENDIZAJE

Con el estudio de esta asignatura se pretende que el alumno sea capaz de lograr los siguientes resultados del aprendizaje:

- Conocer y fundamentar el uso de los procesos nucleares para aplicaciones energéticas y no energéticas
- •Conocer los conceptos básicos de la ciencia nuclear y entender las limitaciones de la física clásica para analizar el átomo y el núcleo.
- •Identificar a la fisión como la reacción básica para el aprovechamiento de la energía nuclear en la actualidad.
- •Conocimiento cualitativo del funcionamiento del reactor: el cómo y el porqué de su configuración.
- •Conocer las características generales de tecnologías nucleares comercializadas para producción de electricidad. Centrales de agua ligera.
- •Conocer las actividades que constituyen el ciclo de combustible nuclear
- •Conocer los principales tipos de aceleradores de partículas
- •Conocer distintos sistemas para la producción de radionucleidos y radiaciones ionizantes.
- •Conocer diversas aplicaciones de los radionucleidos y las radiaciones en la industria y en la medicina.
- •Conocer cómo se detecta y mide la radiación.

el "Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

- Conocer los distintos tipos de riesgos asociados al uso de las instalaciones nucleares y radiactivas en general, y de las centrales nucleares en particular.
- •Conocer los medios disponibles y en desarrollo para hacer frente a los riesgos relativos a la salud, el impacto medio ambiental y la proliferación.
- •Conocer las características de los reactores de fisión avanzados y de otros sistemas nucleares futuros: sistemas transmutadores y reactores de fusión.
- •Plantear y discutir las cuestiones que sirvan para evaluar el interés de la energía nuclear como opción para producir electricidad
- •Plantear y discutir las posibilidades de la Energía Nuclear Sostenible.

CONTENIDOS

PRESENTACIÓN

Parte teórica:

BLOQUE 1. Introducción a la Ingeniería Nuclear y fundamentos teóricos en los que se basa

BLOQUE 2. Aplicación de la fisión nuclear a la producción de energía eléctrica

BLOQUE 3. Aplicaciones de radionucleidos y radiaciones en campos diferentes del energético: sistemas para su producción, uso y detección

BLOQUE 4. Riesgos derivados de la utilización civil de los procesos nucleares: salud, impacto medio ambiental, proliferación. Medios para hacerlos frente

BLOQUE 5. Perspectivas futuras de la ingeniería nuclear

Prácticas presenciales

Pruebas de evaluación continúa

METODOLOGÍA

La metodología utilizada es la característica de la UNED, enseñanza a distancia apoyada en el uso de las tecnologías de información y comunicación. La bibliografía básica está especialmente diseñada para facilitar al alumno la asimilación de los contenidos de manera autónoma.

Las actividades de seguimiento y evaluación continua se realizarán fundamentalmente a través de la participación en los foros de debate del aula virtual, de las pruebas de evaluación continua, y de las prácticas de simulación a distancia vía Internet. Por otra parte, la prueba presencial personal será un indicador del nivel global de asimilación alcanzado por el estudiante al finalizar el periodo de aprendizaje de la asignatura. Las prácticas presenciales contribuirán a su vez a valorar todo el proceso de aprendizaje.

Las pruebas de evaluación continua se realizarán paulatinamente a lo largo del curso, y están pensadas para que los estudiantes puedan contrastar su proceso de asimilación en cada uno de los bloques en que se estructura la asignatura.

Las prácticas de simulación a distancia vía Internet, tienen dos objetivos: i) ayudar al alumno a utilizar las librerías de datos sobre secciones eficaces para el diseño de cualquier instalación nuclear, y ii) poner de manifiesto la gran importancia de la simulación computacional en la predicción y análisis del comportamiento de los blindajes contra la radiación, aplicándose en esta asignatura a sistemas sencillos.

Las prácticas presenciales tienen como objetivo fundamental que el alumno entre en contacto con las instalaciones de carácter nuclear y vean in situ la enorme complejidad, desarrollo tecnológico y la seguridad de esas instalaciones. En caso de establecer las prácticas en forma de seminario, el objetivo será garantizar que el alumno disponga de las bases y actitud crítica que le permitan evaluar la viabilidad de la energía nuclear (en sus distintas opciones) para producir electricidad de forma sostenible.

La labor personal y continuada del alumno es imprescindible para el proceso de aprendizaje, siendo fundamental la asimilación de los nuevos conceptos.

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen Preguntas desarrollo Duración del examen Material permitido en el examen

NIngún tipo de material Criterios de evaluación

Examen de desarrollo 120 (minutos)

validez e integridad de este documento puede ser verificada mediante

UNED 10 CURSO 2017/18

El examen consistirá en la resolución de varais cuestiones de desarrollo (entre 5 y 10) estructuradas en cinco partes, correspondientes a cada uno de los bloques de la asignatura. Las preguntas del Bloque 1 computarán un 30% en la nota del examen, y las del resto de los Bloques (2-5) el 70% restante, de forma igualitaria.

La asignatura se aprueba si se obtiene una calificación global igual o superior a cinco, pero además se fija como condicionante adicional para la superación de la misma, el haber asistido a la Práctica Presencial (PraP) presencial, y haber obtenido un mínimo de 4 puntos sobre 10 en el resto de las actividades evaluables: (Prueba Presencial (PruP), Prácticas de Simulación a distancia vía Internet (PraS) y Pruebas de Evaluación Continua (PEC).

Por tanto, y en relación al examen, parar poder aprobar la asignatura es condicion necesaria el obtener una calificación igual o superior a 4 puntos sobre 10.

No se exije una calificación mínima en cada cuestión de desarrollo para el aprobado. En la valoración de las cuestiones se tendrá en cuenta que el planteamiento esté claro y correctamente establecido, y los conceptos utilizados bien utilizados.

% del examen sobre la nota final Nota del examen para aprobar sin PEC Nota máxima que aporta el examen a la calificación final sin PEC

Nota mínima en el examen para sumar la 4 PEC

Comentarios y observaciones

Dado que las PEC son obligatorias no hay Nota mínima del examen para aprobar sin PEC y tampoco hay Nota máxima que aporta el examen a la calificación final sin la realización de las PEC.

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC? Descripción

Las Pruebas de Evaluación Continua (PEC) son actividades obligatorias.

Son actividades de seguimiento y evaluación continua del proceso de asimilación/aprendizaje en cada uno de los bloques en que se estructura la asignatura. Estas se pondrán a disposición de los estudiantes en el curso virtual de la asignatura

Criterios de evaluación

Para obtener el aprobado en la asignatura es condición indispensable btener una calificación igual o superior a 4 puntos sobre 10 en la evaluación de las PEC.

Las PEC se tendrán en cuenta sólo si la nota del examen es igual o superior a 4.

Ponderación de la PEC en la nota final

20%

Fecha aproximada de entrega

15/05/2018

Comentarios y observaciones

UNED 11 CURSO 2017/18 Las PEC correspondinets al bloque 1 se entregarán como fecha límite la cuarta semana despues de haber empezado el curso.

Las PEC correspondinets al bloque 2 se entregarán como fecha límite la sexta semana después de haber empezado el curso.

Las PEC correspondinets al bloque 3 se entregarán como fecha límite la octava semana después de haber empezado el curso.

Las PEC correspondinets al bloque 4 se entregarán como fecha límite la decima semana después de haber empezado el curso.

Las PEC correspondinets al bloque 5 se entregarán como fecha límite la duodécima semana después de haber empezado el curso.

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s? Descripción

Las Prácticas de Simulación a distancia vía Internet (PraS) son actividades

Las prácticas de simulación a distancia vía Internet se orientan fundamentalmente a que el alumno se familiarice con el concepto de sección eficaz y comprenda su enorme utilidad en el diseño de cualquier tipo de instalación nuclear. También se tratará el tema de diseño de blindajes contra la radiación, pudiendo comprobar de un modo interactivo el efecto que tienen esos materiales en diversos campos de radiación.

En la plataforma virtual de la asignatura se recoge toda la información precisa para el buen desarrollo de las prácticas víalnternet. En concreto, se proporciona el guion de uso, los datos de acceso a los programas de prácticas, se indica la lista de los problemas seleccionados del texto de prácticas que se proponen para ser resueltos por el alumno, y se dan las indicaciones precisas sobre la presentación, forma de envío y fechas de entrega del trabajo.

Criterios de evaluación

Para obtener el aprobado en la asignatura es condición indispensable btener una calificación igual o superior a 4 puntos sobre 10 en la evaluación de las PraS.

Las PraS se tendrán en cuenta sólo si la nota del examen es igual o superior a 4.

Ponderación en la nota final

10%

Fecha aproximada de entrega

31/05/2018

Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

UNED 12 CURSO 2017/18 La evaluación de la asignatura se realizará en función de las siguientes actividades. todas ellas obligatorias.

Prueba Presencial (PruP).

Práctica Presencial (PraP).

Prácticas de Simulación a distancia vía Internet (PraS).

Pruebas de Evaluación Continua (PEC).

La nota final de la asignatura se calcula de acuerdo a los siguientes criterios:

1. La asignatura se aprueba si se obtiene una calificación global igual o superior a cinco, pero además se fija como

condicionante adicional para la superación de la misma, el haber asistido a la práctica presencial, y haber obtenido un

mínimo de 4 puntos sobre 10 en el resto de las anteriores actividades.

2. Si se supera el condicionante mencionado, el cálculo de la nota final de la asignatura se hace de acuerdo a la siguiente fórmula:

Nota (final) = $0.1 \times PraS + 0.2 \times PEC + 0.7 \times PruP$

*La Nota asociada a cualquier actividad se puntúa de 0 a 10.

BIBLIOGRAFÍA BÁSICA

MATERIAL PARA LA PARTE TEÓRICA

Para la preparación de la asignatura se utilizará como texto base:

Título: FUNDAMENTOS DE INGENIERÍA NUCLEAR

Autor/es: SANZ, J.; PIERA, M.; OGANDO, F.; SAUVAN, P. y ALONSO, M.

Este texto no ha sido publicado aún, pero está disponible para el curso presente en formato electrónico en la Plataforma virtual.

Este libro, escrito y revisado por el equipo docente, está estructurado con los mismos temas que constituyen los contenidos de la asignatura, tal y como se explica en el apartado Presentación de esta Guía. Es un texto pensado para estudiantes que por vez primera se enfrentan a cuestiones relacionadas con la ingeniería nuclear, cubriendo por tanto todos los conceptos básicos en el campo de la ciencia nuclear que se necesitan para abordar la asignatura. Se trata de un material muy extenso, por lo que en la Guía II de estudio disponible en la plataforma virtual se darán las orientaciones al estudio pertinentes, limitando y priorizando sus contenidos de cara a la preparación de las pruebas presenciales.

UNED 13 CURSO 2017/18

BIBLIOGRAFÍA COMPLEMENTARIA

ISBN(13):9788436251937

Título:EL PANORAMA ENERGÉTICO MUNDIAL: PROBLEMÁTICA Y ALTERNATIVAS DE FUTURO

Autor/es:Alonso Ramos, Mercedes;

Editorial:U.N.E.D.

ISBN(13):9788474841190

Título: REACTORES NUCLEARES (1ª)

Autor/es:Martínez-Val Peñalosa, José Ma; Piera, Mireia;

Editorial:UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

La bibliografía complementaria que se cita a continuación no es necesaria para el aprendizaje de la asignatura, pero sí es recomendable para ampliar la cultura nuclear sobre los temas que se tratan en la asignatura.

Título: 222 Cuestiones sobre la energía, Edit. Foro de la Industria Nuclear Española, 2001, Madrid.

Autor/es: BARRACHINA, M y otros Editorial: El FORO NUCLEAR

Este libro está disponible en formato electrónico a través de la Plataforma aLF. Puede enviarse a los alumnos interesados en formato físico por correo ordinario, habiéndose puesto a nuestra disposición por cortesía de El FORO NUCLEAR.

En este texto se presentan los interrogantes que más comúnmente se plantean sobre el tema energético y sobre el papel que la energía nuclear y sus aplicaciones desempeñan en nuestra sociedad. Las cuestiones que se discuten son las fundamentales a la hora de evaluar el problema de la necesidad de utilizar fuentes energéticas respetuosas con el medio ambiente y compatibles con un crecimiento sostenible.

Por tanto, se ajusta fielmente a los objetivos que se pretenden conseguir en el curso. Presenta una estructura bastante similar a la del texto base. Muchas de las preguntas que sobre el tema nuclear se plantean, se tratan con más amplitud en el texto base. Otras relacionadas con otras fuentes energéticas distintas a la nuclear, y que apenas se desarrollan en el texto base, son sin embargo fundamentales a la hora de que el alumno encuadre a la energía nuclear en el marco general de las todas las demás fuentes energéticas, comprendiendo sus similitudes y diferencias, ventajas y desventajas.

Título: **REACTORES NUCLEARES**

ISBN (13): 9788474841190

Autor/es: Piera, Mireia; Martínez-Val Peñalosa, José Ma

Editorial: UNIVERSIDAD POLITÉCNICA DE MADRID. Madrid. Ed. Sección de Publicaciones

de la ETSII de la UPM. (Tel.: 91 336 30 68)

UNED 14 CURSO 2017/18

Este libro es de contenido más avanzado, y se utiliza como uno de los textos base de las asignaturas optativas Ingeniería Nuclear y Diseño de Reactores Nucleares.

También se recomienda el Cd-Rom multimedia:

Título: *EL PANORAMA ENERGÉTICO MUNDIAL: PROBLEMÁTICA Y ALTERNATIVAS DE FUTURO* (2005)

ISBN (13): 9788436251937

Autor/es: ALONSO, M., LECHÓN, Y., MANSO, R., EMBID, M., ALPAÑÉS, D. y GONZÁLEZ,

A;

Editorial: UNED

Premio al mejor material didáctico audiovisual del Consejo Social de la UNED, convocatoria 2008. Este Cd quiere promover el debate energético en nuestra aldea global: los costes externos de la energía, la gestión de los residuos radioactivos y la mejora de la misma mediante la transmutación, el cambio climático y el papel de la energía nuclear en relación con el desarrollo sostenible. Aunque algunas partes de este material ya no son de actualidad, los conceptos básicos que se dan sobre temas nucleares son muy pertinentes para comprender mejor la asignatura. Si hay disponibilidad de existencias, este CD se enviará gratuitamente a los alumnos interesados, por cortesía de la autora Mercedes Alonso.

RECURSOS DE APOYO Y WEBGRAFÍA

Guía didáctica:

El texto base que ha de utilizarse para asimilar esta asignatura tiene como objetivo hacer una revisión de las principales tecnologías ligadas a la explotación de los fenómenos nucleares, e introducir la ciencia básica necesaria para la descripción de dichos fenómenos. Sabíamos que el resultado iba a ser un texto amplio, más allá del alcance especifico de la signatura. Sin embargo, creemos que esta es la mejor opción, pues el texto así concebido creemos que será muy útil para que el estudiante encuadre convenientemente aquellas cuestiones y materia que específicamente constituye el contenido de la asignatura. En la sección del libro de texto base dedicada a su Presentación se indica de forma general como ha de utilizarse para abordar esta signatura, y en el Anexo II del libro, concebido como Guía Didáctica para esta signatura, se indica ya de forma específica los temas que van a constituir la materia de estudio y los de lectura aconsejada pero no como materia de estudio propiamente dicha de la asignatura

Curso virtual:

Es fundamental para el desarrollo de la asignatura que el alumno utilice la Plataforma aLF.

Cualquier material complementario adicional que se pueda publicar o aconsejar se encontrará en dicha Plataforma. El alumno puede enviar sus consultas a los distintos foros de debate, o por correo electrónico a la atención de cualquiera de los profesores de la asignatura

el "Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

UNED 15 CURSO 2017/18

Programas de radio grabados por el equipo docente:

En el curso virtual de la asignatura se comunicará al alumno la temática del programa que se emita, así como la significación del mismo en el contexto de la asignatura. Además, podrá encontrar una relación de los programas emitidos con los enlaces adecuados.

Prácticas

Como se indicó en la sección de contenidos, la asignatura consta de Prácticas de simulación a distancia vía Internet y de una sesión Práctica presencial.

Prácticas de simulación a distancia vía Internet

Las prácticas de simulación a distancia vía Internet se orientan fundamentalmente a que el alumno se familiarice con el concepto de sección eficaz y comprenda su enorme utilidad en el diseño de cualquier tipo de instalación nuclear. También se tratará el tema de diseño de blindajes contra la radiación, pudiendo comprobar de un modo interactivo el efecto que tienen esos materiales en diversos campos de radiación.

En la plataforma virtual de la asignatura se recoge toda la información precisa para el buen desarrollo de las prácticas víalnternet. En concreto, se proporciona el guion de uso, los datos de acceso a los programas de prácticas, se indica la lista de los problemas seleccionados del texto de prácticas que se proponen para ser resueltos por el alumno, y se dan las indicaciones precisas sobre la presentación, forma de envío y fechas de entrega del trabajo.

Prácticas presenciales

Estas prácticas consisten en una visita a una Instalación Nuclear que se realizará en el mes de junio, o bien en un seminario presencial en los locales del Departamento de ingeniería Nuclear de la ETS Ingenieros Industriales sobre un tema de especial relevancia y actualidad. Con antelación a la realización de las prácticas, los alumnos recibirán toda la información necesaria sobre las mismas: actividades y material de apoyo. Esa misma información aparecerá en la plataforma virtual de la asignatura.

CURSO 2017/18 **UNED** 16

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no hayan sido sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante