GRADO EN INGENIERÍA INFORMÁTICA PRIMER CURSO

GUÍA DE ESTUDIO PÚBLICA

LÓGICA Y ESTRUCTURAS DISCRETAS

CÓDIGO 71901037

"Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

LÓGICA Y ESTRUCTURAS DISCRETAS CÓDIGO 71901037

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN
REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA ASIGNATURA
EQUIPO DOCENTE
HORARIO DE ATENCIÓN AL ESTUDIANTE
TUTORIZACIÓN EN CENTROS ASOCIADOS
COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE
RESULTADOS DE APRENDIZAJE
CONTENIDOS
METODOLOGÍA
SISTEMA DE EVALUACIÓN
BIBLIOGRAFÍA BÁSICA
BIBLIOGRAFÍA COMPLEMENTARIA
RECURSOS DE APOYO Y WEBGRAFÍA

go Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

Nombre de la asignatura LÓGICA Y ESTRUCTURAS DISCRETAS

 Código
 71901037

 Curso académico
 2018/2019

Departamento INTELIGENCIA ARTIFICIAL

Título en que se imparte GRADO EN INGENIERÍA INFORMÁTICA - TIPO: FORMACIÓN BÁSICA -

CURSO: PRIMER CURSO

N° ETCS6Horas150.0PeriodoSEMESTRE 1Idiomas en que se imparteCASTELLANO

PRESENTACIÓN Y CONTEXTUALIZACIÓN

Esta asignatura proporciona estructuras matemáticas sobre las que modelizar problemas (preguntas, restricciones, sobre un determinado conjunto de datos). Además facilita los mecanismos deductivos necesarios para construir la solución de tales problemas o para comprobar que una solución dada es correcta.

Proyección de la asignatura en el plan de estudios

Ésta es una de las tres asignaturas en que se divide la materia "Fundamentos Matemáticos".

- •Lógica y Estructuras Discretas (1^{er} cuatrimestre, 1^{er} curso, 6 créditos)
- •Fundamentos Matemáticos (1^{er} cuatrimestre, 1^{er} curso, 6 créditos)
- •Estadística (2º cuatrimestre, 1^{er} curso, 6 créditos)

Las asignaturas de esta materia son comunes tanto al *Grado de Ingeniería Informática* como al *Grado de Ingeniería de las Tecnologías de la Información*. Forman parte del bloque de formación básica de ambas titulaciones.

Esta asignatura facilita los siguientes fundamentos formales comunes:

- 1. Facilita estructuras matemáticas sobre las que modelizar datos (conjuntos, relaciones, funciones, árboles, grafos, etc.)
- 2. Facilita un lenguaje preciso y universal para especificar restricciones y problemas (preguntas, especificaciones) sobre estos modelos.
- 3. Facilita técnicas de construcción y comprobación de soluciones (mecanismos deductivos, inducción y recursión, verificaciones)

Sólo en el primer curso, el estudiante debe poder apreciar el valor instrumental de esta asignatura tanto para la compresión de las otras dos de la misma materia como para la comprensión de otras asignaturas, especialmente:

- •Fundamentos de Programación
- •Estrategias de Programación
- •Estructuras de Datos y Autómatas, Gramáticas y Lenguajes

Contribución de la asignatura al perfil profesional

En ambas titulaciones facilita básicamente dos competencias generales:

1. Competencias cognitivas superiores: análisis, síntesis, razonamiento crítico

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediante el "Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

UNED 3 CURSO 2018/19

2. Competencias de expresión y comunicación: las que requieren un lenguaje formal preciso de difusión y discusión de contenidos.

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR LA **ASIGNATURA**

Esta asignatura no requiere ningún conocimiento formal previo. Parte de los conceptos intuitivos de conjunto y de los esquemas intuitivos de razonamiento para construir todo el temario.

EQUIPO DOCENTE

JOSE LUIS FERNANDEZ VINDEL Nombre y Apellidos

Correo Electrónico ilvindel@dia.uned.es

91398-7181 Teléfono

ESCUELA TÉCN.SUP INGENIERÍA INFORMÁTICA Facultad

Departamento INTELIGENCIA ARTIFICIAL

MANUEL LUQUE GALLEGO Nombre y Apellidos Correo Electrónico mluque@dia.uned.es

Teléfono 91398-8405

Facultad ESCUELA TÉCN.SUP INGENIERÍA INFORMÁTICA

Departamento INTELIGENCIA ARTIFICIAL

HORARIO DE ATENCIÓN AL ESTUDIANTE

Los datos oficiales de atención de esta asignatura son:

José Luis Fernández Vindel: Lunes de 15:00 a 19:00. Tfno: 91 398 7181

Manuel Luque Gallego: Lunes de 15:00 a 19:00. Tfno: 91 398 8405

Dpto. de Inteligencia Artificial, ETSII Informática de la UNED. C/ Juan del Rosal 16. Madrid 28040

Adicionalmente, ell estudiante dispone de canales de comunicación en el entorno del Curso Virtual. Especialmente los foros generales, que son atendidos directamente por el Equipo Docente (en colaboración con las aportaciones que siempre se entrecruzan entre los propios estudiantes). En el mismo entorno virtual, tiene vías de contacto con el Profesor Tutor que le haya sido asignado, tanto para la tutela académica como para la corrección de las actividades evaluables.

Recomendamos al estudiante que acuda a su Centro más cercano para utilizar los recursos físicos distribuidos localmente (bibliotecas, conectividad, etc.). En particular, las tutorías presenciales se imparten en los Centros Asociados. Cuando el Centro no disponga de un profesor tutor asociado a esta asignatura, se garantizará este tipo de tutorización mediante interconexión telemática (aulas Avip) de algunos Centros a otro.

En todo caso, el equipo docente de esta asignatura ha pretendido que para una adecuada consecución de los objetivos de aprendizaje no sea necesario acudir a tutorías presenciales. Es muy importante que el alumno esté muy atento a las noticias y mensajes que el equipo

este documento puede ser verificada mediante GUI - La autenticidad,

UNED CURSO 2018/19 4

docente transmita en el curso virtual, y que conozca lo antes posible una de las características esenciales de la UNED, como es el hecho de que el equipo docente es quien finalmente evalúa al alumno, y el tutor solamente es una persona de apoyo.

TUTORIZACIÓN EN CENTROS ASOCIADOS

En el enlace que aparece a continuación se muestran los centros asociados y extensiones en las que se imparten tutorías de la asignatura. Estas pueden ser:

- •Tutorías de centro o presenciales: se puede asistir físicamente en un aula o despacho del centro asociado.
- •Tutorías campus/intercampus: se puede acceder vía internet.

La información ofrecida respecto a las tutorías de una asignatura es orientativa. Las asignaturas con tutorías y los horarios del curso actual estarán disponibles en las fechas de inicio del curso académico. Para más información contacte con su centro asociado.

Consultar horarios de tutorización de la asignatura 71901037

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

Lógica y Estructuras Discretas es una de las asignaturas de la materia Fundamentos Matemáticos de la Informática. De las cuatro competencias generales asociadas a la materia, esta asignatura forma en la competencia general G2 y en parte de la G4 (en tanto que facilita un lenguaje matemático preciso). De las dos competencias específicas de la materia, forma en la competencia específica FB.03 y más parcialmente en la FB.01, en tanto que facilta su base de inferencia.

Competencias generales:

- G.2 Competencias cognitivas superiores: selección y manejo adecuado de conocimientos, recursos y estrategias cognitivas de nivel superior apropiados para el afrontamiento y resolución de diversos tipos dtareas/problemas con distinto nivel de complejidad y novedad: Análisis y Síntesis. Aplicación de los conocimientos a la práctica Resolución de problemas en entornos nuevos o poco conocidos. Pensamiento creativo. Razonamiento crítico. Toma de decisiones.
- G.4 Competencias de expresión y comunicación (a través de distintos medios y con distinto tipo de interlocutores). Comunicación y expresión escrita. Comunicación y expresión oral. Comunicación y expresión en otras lenguas (con especial énfasis en el inglés). Comunicación y expresión matemática, científica y tecnológica (cuando sea requerido y estableciendo los niveles oportunos)

Competencias específicas:

FB.01 - Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal, cálculo diferencial e integral, métodos numéricos, algorítmica numérica y estadística y optimización . FB.03 - Capacidad para comprender y dominar los conceptos básicos de matemática discreta, lógica, algorítmica y complejidad computacional, y su aplicación para el tratamiento automático de la información por medio de sistemas computacionales y para la resolución de

validez e integridad de este documento puede ser verificada mediante

UNED CURSO 2018/19 5

problemas propios de la ingeniería

RESULTADOS DE APRENDIZAJE

¿Qué conocerá y qué será capaz de hacer el estudiante al finalizar el curso?

- •Conocer las estructuras matemáticas básicas: el concepto intuitivo de conjunto y las definiciones de otros conceptos básicos derivados (producto cartesiano, relación, función, grafo, árbol, etc.).
- •Conocer la sintaxis de la lógica de primer orden y su semántica (la relación entre fórmulas y estructuras matemáticas que las satisfacen).
- •Conocer el concepto de consecuencia lógica y cómo se calcula o comprueba mediante técnicas de derivación.
- •Comprender el papel de la inducción y de las definiciones recursivas en el uso formal de conjuntos infinitos (definición, demostraciones).
- •Comprender las definiciones de conceptos derivados, expresadas en términos de fórmulas lógicas (quizá reescritas en lenguaje natural).
- Analizar demostraciones informales que puedan encontrarse en esta asignatura u otras, comprobando que tienen un riguroso valor formal (aunque se expresen de forma natural y abreviada).
- •Aplicar el marco formal estudiado en la resolución de problemas cotidianos, mediante la representación formal de los datos (estructuras, fórmulas lógicas) y el uso de cálculo de derivaciones.

(Anexo) Resultados de aprendizaje, tal y como se especifican en la memoria de la titulación

De los ocho resultados de aprendizaje definidos en la materia, esta asignatura pretende principalmente cuatro (listados de mayor a menor nivel de intensidad):

- 1. (RA1) Modelizar problemas sobre estructuras matemáticas básicas y fórmulas
- 2. (RA2) Utilizar las técnicas básicas de inferencia para generar o confirmar consecuencias
- 3. (RA5) Manejar las técnicas básicas de recuento y calcular probabilidades de sucesos

6

4. (RA8) Saber utilizar herramientas informáticas para la consolidación y uso de los conceptos de la materia, en un contexto de trabajo colaborativo.

CURSO 2018/19

UNED

CONTENIDOS

Lógica de Proposiciones. Sintaxis y Semántica.

Lógica de Proposiciones. Equivalencia, Validez y Satisfacibilidad.

Lógica de Proposiciones. Consecuencia e Inferencia.

Lógica de Predicados. Sintaxis y Semántica.

Lógica de Predicados. Equivalencia, Validez y Satisfacibilidad.

Lógica de Predicados. Consecuencia e Inferencia.

Estructuras Discretas. Conjuntos.

Estructuras Discretas. Relaciones.

Estructuras Discretas. Funciones.

Estructuras Discretas. Combinatoria.

Estructuras Discretas. Grafos.

Estructuras Discretas. Recorridos en Grafos.

Estructuras Discretas. Árboles.

METODOLOGÍA

Metodología

El tipo de metodología propuesto es el habitual en los trabajos con contenidos marcadamente teóricos. Por un lado se realizarán actividades que refuercen la correcta asimilación de los conceptos y de su interdependencia. Por otro lado, se realizarán actividades más abiertas que potencien el uso de estos contenidos en la resolución de escenarios usuales de trabajo.

[Actividades no evaluables] Para la asimilación de conceptos se proponen actividades no evaluables, sin peso en la evaluación final. Serán facilitadas todas ellas con carácter general y público en el curso virtual: pruebas objetivas (test, con o sin corrección automática), propuestas de problemas sencillos (de los que se facilitará solución de forma pública y general posteriormente), propuestas de problemas cuya correcta resolución sólo se cotejará entre alumnos en los foros. Para todas estas actividades, individuales o en grupo, se incentivará el uso de aplicaciones informáticas de apoyo (demostradores, simuladores, etc.) [Actividades evaluables] Las Pruebas de Evaluación Contínua son dos, una por bloque temático:

- •Una actividad correspondiente a los dos primeros temas: "Lógica de proposiciones y de predicados de primer orden" y "Técnicas básicas de prueba".
- •Una actividad para los otros tres temas: "Conjuntos, relaciones y funciones", "Combinatoria" y "Teoría de grafos".

Cada una de ellas consiste en la realización de test de corrección automática, extensos, sobre los contenidos de aprendizaje del bloque correspondiente. Estos test están abiertos durante un amplio periodo y pueden reescribirse varias veces.

[Distribución del tiempo de estudio] Recomendamos al estudiante, aproximadamente, la siguiente dedicación distribuida de su tiempo:

- •Lectura del texto y materiales complementarios: 25% (unas 40 horas)
- •Realización de actividades no evaluables (test, problemas, puestas en común, manejo de aplicaciones): 35%
- •Realización de las actividades evaluables: 20%
- •Preparación y realización del examen final (uso de propuestas anticipadas de examen, consultas sobre los mismos): 20%

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Examen mixto Tipo de examen 20 Preguntas test Preguntas desarrollo 120 (minutos) Duración del examen Material permitido en el examen

Ninguno.

CURSO 2018/19 **UNED** 8

Criterios de evaluación

En el enunciado del examen se indicará:

Para el test, cuánto puntúa cada acierto, cada fallo y cada pregunta no contestada.

Para la pregunta de desarrollo: cuántos puntos vale.

% del examen sobre la nota final

Nota del examen para aprobar sin PEC

5.6

Nota máxima que aporta el examen a la

10

calificación final sin PEC

Nota mínima en el examen para sumar la 0

Comentarios y observaciones

Abajo se indica cómo se calcula la nota final de la asignatura.

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC?

Descripción

En el curso virtual se indicará cómo se evalúa cada PEC.

Criterios de evaluación

Abajo se indica cómo se calcula la nota final de la asignatura.

Ponderación de la PEC en la nota final

20 %

Fecha aproximada de entrega

20/12/2018

Comentarios y observaciones

Abajo se indica cómo se calcula la nota final de la asignatura.

OTRAS ACTIVIDADES EVALUABLES

¿Hay otra/s actividad/es evaluable/s?

Descripción

Criterios de evaluación

Ponderación en la nota final

0

Fecha aproximada de entrega

Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

CURSO 2018/19 **UNED** 9

En la calificación final intervienen tanto la nota del examen presencial como la que provenga de la evaluación contínua. La calificación final se calcula como:

"Calificación final" = 0.9 x "Examen" + 0.2 x "Evaluación Continua",

donde el símbolo "x" indica el producto o multiplicación, y las notas "Examen" y "Evaluación Continua" se valoran de 0 a 10 cada una. Si el resultado de la fórmula anterior supera los 10 puntos, se considera que la nota final es 10. En resumen, el examen presencial aporta a lo sumo 9 puntos sobre la calificación final; la evaluación contínua aporta a lo sumo 2 puntos sobre la calificación final. Para obtener las calificaciones de Aprobado, Notable y Sobresaliente es necesario que el resultado de la calificación final, según la fórmula anterior, sea mayor o igual, respectivamente, que 5, 7 y 9.

De un curso para otro no se guardará ninguna nota de ninguna actividad evaluable ni del examen.

Para aquellos alumnos que deseen presentarse a la convocatoria de septiembre se les guardará la nota de las actividades evaluables que presentasen durante el primer cuatrimestre, aunque no se les guardará la nota del examen de febrero si se hubieran presentado en dicha convocatoria. Además, desde mediados de junio hasta finales de agosto se abrirá nuevamente la entrega de las actividades evaluables en la plataforma virtual Alf para que los alumnos que deseen presentarse en septiembre puedan entregarlas nuevamente. Dichas actividades son las mismas que se propusieron a lo largo del primer cuatrimestre. Durante dicho período de junio a septiembre los alumnos podrán utilizar todos los recursos disponibles en el curso virtual (foros, área de documentos, etc.); sin embargo, el equipo docente no atenderá los foros durante ese período.

BIBLIOGRAFÍA BÁSICA

En cuanto a la bibliografía básica se tiene que:

- 1. Los dos primeros temas ("Lógica de proposiciones y de predicados de primer orden" y "Técnicas básicas de prueba") se facilitan en el curso virtual en forma de vídeos, resúmes y test de autoevaluación.
- 2. Para los otros tres temas ("Conjuntos, relaciones y funciones", "Combinatoria" y "Teoría de grafos") se utilizará el libro disponible en Amazon Kindle a través del siguiente enlace:
 - "Estructuras Discretas", de Manuel Luque Gallego.

Adicionalmente en el grupo de trabajo del curso virtual encontrará:

- 1. Un almacén incremental de ejemplos y ejercicios.
- 2. Un almacén incremental de narraciones (vídeos) sobre algunos conceptos básicos.
- 3. Tests de autoevaluación, tanto internos (en el grupo de trabajo) como hospedados en otro sistema externo (Siette, univ. de Málaga; aunque diseñados por el equipo docente de esta asignatura)

validez e integridad de este documento puede ser verificada mediante

UNED 10 CURSO 2018/19 4. Herramientas (probadores de teoremas como Prover9/Mace4, entornos de deducción natural como Pandora, etc)

El texto básico que se usó durante los cursos 2009-10 y 2010-2011 se cita ahora como componente único de la bibliografía complementaria. No es imprescindible, en modo alguno, para el correcto seguimiento de la asignatura. Además, la notación y definiciones que usará el equipo docente puede diferir de la que se usa en dicho libro. Recomendamos a los alumnos que se estudien preferentemente la bibliografía básica recomendada antes de acudir a cualquier otro tipo de material.

BIBLIOGRAFÍA COMPLEMENTARIA

ISBN(13):9788489660045

Título:MATEMÁTICA DISCRETA Y LÓGICA (3ª reimp.)

Autor/es:Tremblay, Jean Paul;

Editorial:PRENTICE HALL

Es posible que el equipo docente saque a la venta en el futuro material adicional de apoyo para el estudio de la asignatura como pueden ser libros (en papel o electrónicos), o aplicaciones para sistemas operativos de tabletas (iOS, Android). Informaremos adecuadamente a los alumnos de cualquier novedad sobre este tipo de publicaciones.

RECURSOS DE APOYO Y WEBGRAFÍA

En el grupo virtual se facilitarán importantes recursos de apoyo para el estudio de la de la asignatura. Aparte podrá encontrar todas las facilidades usuales de estos grupos de estudio (foros, blog, zona de documentación, etc.)

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del titular que los desempeñe.

CURSO 2018/19 **UNED** 11