GUÍA DE ESTUDIO PÚBLICA

SISTEMAS EMPOTRADOS

CÓDIGO 31104055

SISTEMAS EMPOTRADOS CÓDIGO 31104055

ÍNDICE

PRESENTACIÓN Y CONTEXTUALIZACIÓN REQUISITOS Y/O RECOMENDACIONES PARA CURSAR ESTA **ASIGNATURA EQUIPO DOCENTE** HORARIO DE ATENCIÓN AL ESTUDIANTE COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE RESULTADOS DE APRENDIZAJE **CONTENIDOS METODOLOGÍA** SISTEMA DE EVALUACIÓN **BIBLIOGRAFÍA BÁSICA** BIBLIOGRAFÍA COMPLEMENTARIA RECURSOS DE APOYO Y WEBGRAFÍA IGUALDAD DE GÉNERO

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada medianteel

UNED 2 CURSO 2024/25 Nombre de la asignatura SISTEMAS EMPOTRADOS

Código 31104055 Curso académico 2024/2025

MÁSTER UNIVERSITARIO EN INGENIERÍA DE SISTEMAS Y DE Título en que se imparte

CONTROL

CONTENIDOS Tipo

Nº ETCS Horas 150

Periodo SEMESTRE 2 Idiomas en que se imparte **CASTELLANO**

PRESENTACIÓN Y CONTEXTUALIZACIÓN

Los sistemas empotrados o embebidos (SSEE) son una solución fundamental para desarrollar sistemas de control en tiempo real y para el procesado intensivo de señales y constituyen una herramienta fundamental que debe conocer cualquier ingeniero de sistemas. En esta asignatura el alumno aprenderá técnicas, hardware y software, asociadas a los sistemas empotrados y se analizarán las diferentes estrategias comerciales. Esto permitirá al alumno comparar y seleccionar el dispositivo más adecuado para afrontar problemas de control o procesado, cumpliendo requisitos particulares como: coste, consumo, tiempo real, cómputo intensivo, etc.

La asignatura se encuentra enfocada al aprendizaje de conceptos básicos de programación de microcontroladores. Esto se plasmará en el uso de herramientas de programación y depuración utilizando un simulador. También se muestra una visión del hardware electrónico con el que se construyen los sistemas empotrados permitiendo así una formación integral en todo el proceso de concepción y diseño del sistema. Como ejercicio de programación, el alumno manejará un sistema de desarrollo especifico de un fabricante (Microchip), por facilitar éste las herramientas de desarrollo, pero teniendo en cuenta que todos los fabricantes disponen de sistemas semejantes.

Además, con el objetivo de que el alumno pueda experimentar de forma real el diseño y programación de un pequeño sistema empotrado, al alumno se le proporcionará al comienzo del cuatrimestre una tarjeta de desarrollo, en base a la cual deberá crear como trabajo final un sistema empotrado orientado a algunos de los puntos en los que se centra el Máster (control, sensores/acuadores, robótica, visión, inteligencia artificial, etc.)

(control, sensores/acuadores, robótica, visión, inteligencia artificial, etc.)

Por lo tanto, esta asignatura permite el desarrollo práctico de los conceptos teóricos que se imparten en otras asignaturas del Máster, como son:

•Procesado de señales.

•Visión por computador.

•Sensores y actuadores.

•Robótica industrial.

•Robots autónomos.

•Automatización industrial.

y, además, los conocimientos adquiridos en esta asignatura pueden facilitar el desarrollo de

las asignaturas de prácticas del Máster:

- Prácticas de instrumentación y control.
- •Prácticas de computación y robótica.

REQUISITOS Y/O RECOMENDACIONES PARA CURSAR ESTA **ASIGNATURA**

Se asume que los alumnos que cursen esta asignatura tienen conocimientos previos similares a los que se imparten en las asignaturas de grado relacionadas con la electrónica digital, la programación a bajo nivel, la arquitectura de computadores, los periféricos e interfaces y el tratamiento digital de señales.

Es requisito tener un cierto manejo de inglés técnico, principalmente, a nivel de lectura ya que la mayor parte de las referencias bibliográficas están en inglés.

EQUIPO DOCENTE

DAVID MORENO SALINAS Nombre y Apellidos Correo Electrónico dmoreno@dia.uned.es

Teléfono 91398-7942

ESCUELA TÉCN.SUP INGENIERÍA INFORMÁTICA Facultad

INFORMÁTICA Y AUTOMÁTICA Departamento

JOSE SANCHEZ MORENO (Coordinador de asignatura) Nombre y Apellidos

Correo Electrónico jsanchez@dia.uned.es

Teléfono
Facultad
Departamento

HORARIO DE ATENCIÓN AL ESTUDIANTE

Los dos profesores que forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la asignatura tienen ampliante de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente de la contra de forman parte del equipo docente del equipo de forman parte del equipo docente del equipo experiencia docente, actúan de forma coordinada y comparten responsabilidades. La 2 tutorización se hará mediante el curso virtual y los foros creados para ello. Se hará un ş seguimiento de los trabajos prácticos entregados por los alumnos. El alumno podrá ponerse en contacto directo con el equipo docente en los despachos, teléfonos y correos electrónicos siguientes:

Moreno Salinas, David; dmoreno@dia.uned.es

Martes de 10:00 a 14:00 horas.

Tfno: 913987942; Despacho 6.14; ETSI Informática. UNED.

Sánchez Moreno, José; jsanchez@dia.uned.es

Martes de 10:00 a 14:00 horas.

Tfno: 913987146; Despacho 5.11; ETSI Informática. UNED. seguimiento de los trabajos prácticos entregados por los alumnos. El alumno podrá ponerse

ge "Código

COMPETENCIAS QUE ADQUIERE EL ESTUDIANTE

Competencias Básicas:

CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación

CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio

CB8 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios

CB9 - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades

CB10 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Generales:

CG01 - Adquirir capacidad de iniciativa y motivación; planificación y organización; y manejo adecuado del tiempo.

CG02 - Ser capaz de seleccionar y manejar adecuadamente los conocimientos, recursos y estrategias cognitivas de nivel superior apropiados para el afrontamiento y resolución de diverso tipo de tareas/problemas con distinto nivel de complejidad y novedad: análisis y E síntesis.

CG03 - Ser capaz de aplicar los conocimientos a la práctica y resolver problemas en entornos nuevos o poco conocidos.

CG04 - Ser capaz de desarrollar pensamiento creativo, razonamiento crítico y tomar decisiones

CG05 - Ser capaz de seguir, monitorizar y evaluar el trabajo propio o de otros, aplicando medidas de mejora e innovación.

CG06 - Ser capaz de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, tanto oralmente como por escrito, en seguiro de comunicarse y expresarse, en seguiro de comunicarse y expresarse y expresarse y ex

castellano y otras lenguas, con especial énfasis en inglés

CG07 - Desarrollar capacidades en comunicación y expresión matemática, científica y tecnológica

CG08 - Ser capaz de utilizar las herramientas y recursos de la Sociedad del Conocimiento:

manejo de las TIC, búsqueda de información relevante, gestión y organización de la información, recolección de datos, el manejo de bases de datos y su presentación.

Competencias Específicas:

CE01 - Abordar el tratamiento de procesos industriales, aeronáuticos o navales de distinta

tecnología (mecánicos, electrónicos, sociales, ...) recurriendo a diferentes soluciones. 9

CE02 - Montar sistemas de control sobre procesos reales, incluyendo sensores, actuadores, sincluyendo sensores, sincluyendo sensores, actuadores, sincluyendo sensores, actuadores, sincluyendo sensores, actuadores, sincluyendo sensores, actuadores, sincluyendo sensores, sincluyendo sensores, actuadores, sincluyendo sensores, sincluyendo se

dirección https://sede.uned.es/valida/ de

'Código Seguro

UNED CURSO 2024/25 5

fusión de datos, comunicaciones, microcontroladores, etc.

CE03 - Ser capaz de realizar búsquedas bibliográficas y de documentación técnica para la resolución de problemas

RESULTADOS DE APRENDIZAJE

- •Capacidad de seleccionar el microcontrolador, microprocesador o DSP que mejor se adapte a una determinada aplicación.
- •Analizar e interpretar las prestaciones e información proporcionada por los diferentes fabricantes de semiconductores.
- •Capacidad para diseñar un esquema electrónico de una tarjeta basada en microcontrolador que forme parte de un sistema más amplio.
- •Capacidad de identificar las señales que proporcionan los diferentes sensores interconectados a los sistemas empotrados.
- •Conocer las técnicas de conversión analógica a digital y viceversa.
- •Capacidad de entender las diferentes técnicas de procesamiento digital de las señales, mediante sistemas embebidos.

CONTENIDOS

Contenidos genéricos

La asignatura abordará de forma paralela tanto el hardware como el software de los sistemas empotrados. Se pueden distinguir los siguientes grandes temas:

Bloque 1. Introducción a los sistemas empotrados. Muestra una primera aproximación a los sistemas empotrados mostrando su arquitectura y características principales. Es un bloque introductorio que se puede calificar como de dificultad baja. Se divide en los siquientes tres capítulos:

Capítulo 1: Introducción.

1.1 Conceptos.

1.2 Aplicaciones.

1.3 Clasificación.

En este capítulo se define qué es un sistema empotrado y se clasifican los diferentes tipos de sistemas empotrados. También se analizan sus aplicaciones.

Capítulo 2: Componentes en los SE.

2.1 Módulos típicos en un SE.

2.2 Microcontrolador, DSP o Microprocesador

2.3 PC embebido.

2.4 Sistemas en chip (SoC).

En este capítulo se analizan los diferentes módulos y componentes que son típicos en sistemas empotrados: Microprocesador, microcontrolador, processador digital de señal, los sistemas de comunicación, los interfaces de usuário, los actuadores empotrados, E/S analígicas y digitales, relojes de sistema, sistema de alimentación, etc. Se describen la estrategia de un PC-embebido y los sistemas en chip (SoC).

Capítulo 3: Flujo de Diseño de los SE

- 3.1 Concepción global de sistema.
- 3.2 Fases típicas de diseño.

En este capítulo se estudia el concepto de sistema y la determinación de requisitos del sistema. También se proponen unas fases para el diseño y desarrollo del sistema, incluida su verificación.

Bloque 2. Microcontroladores. Se muestran las principales familias de microcontroladores, sus características y propiedades. Se hace un especial énfasis en la familia de microcontroladores PIC fabricados por Microchip Technology Inc. dada su gran difusión. Se puede considerar que es el bloque de mayor dificultad dado que está muy relacionado con la realización de una práctica de programación con ensamblador de un microcontrolador. Sus contenidos se dividen en:

- 1 Historia.
- 2 Qué es un microcontrolador.
- 3 Aplicaciones y mercado.
- 4 Arquitecturas básicas y recursos.
- 5 Herramientas de Desarrollo.
- 6 Elección del Microcontrolador.
- 7 Microcontroladores más populares.

Bloque 3. Procesadores digitales de señal. En este bloque se explica qué es un DSP y se analiza su arquitectura frente al microcontrolador. Se muestran criterios de selección. Se analizan las diferentes arquitecturas de conversores Analógico-Digital y Digital-Analógico. El nivel de dificultad de este bloque es medio aunque aumenta en la parte relativa a los conversores. Sus contenidos se dividen en:

- 1 Qué es un DSP.
- 2 Arquitectura y criterios de selección.
- 3. Conversores Analógicos.

Bloque 4. Systems On Chip. Este tema se ocupa de los sistemas de procesamiento que se encuentran integrados en un único chip. El nivel de dificultad de este bloque es bajo ya que sus contenidos son muy descriptivos.

METODOLOGÍA

La asignatura se impartirá conforme a la metodología no presencial que caracteriza a la UNED, en la cual prima el autoaprendizaje del alumno, pero asistido por el profesor y articulado a través de diversos sistemas de comunicación docente-discente. Dentro de estos sistemas, cabe destacar que el Máster se imparte con apoyo en una plataforma virtual interactiva de la UNED donde el alumno encuentra tanto materiales didácticos básicos como materiales didácticos complementarios, informaciones, ejercicios y también permite la evaluación correspondiente a las diferentes materias.

La metodología prevista para esta asignatura incluye: la lectura y el estudio de los contenidos teóricos del temario y el trabajo autónomo para la realización obligatoria de las tres actividades de evaluación a distancia.

Los contenidos teóricos de la asignatura "Sistemas Empotrados" se organizan en cuatro bloques:

- •Bloque 1. Introducción a los sistemas empotrados.
- •Bloque 2. Microcontroladores.
- •Bloque 3. Procesadores digitales de señal (DSP)
- •Bloque 4. System On Chip (SoC).

El plan de trabajo sugerido por el equipo docente consta de los siguientes puntos:

- •Semana 1: Estudio de los materiales del bloque 1.
- •Semanas 2 y 3: Estudio de los materiales del bloque 2.
- •Semanas 4 a 6: Realización de la actividad 1.
- •Semana 7: Estudio del bloque 3
- •Semana 8: Realización de la actividad 2.
- •Semanas 9 a 12: Realización de la actividad 3 y lectura del bloque 4.

Los materiales necesarios para abordar el estudio de los bloques y los enunciados de las actividades se publican en el curso virtual al comienzo del cuatrimestre.

SISTEMA DE EVALUACIÓN

TIPO DE PRUEBA PRESENCIAL

Tipo de examen

No hay prueba presencial

CARACTERÍSTICAS DE LA PRUEBA PRESENCIAL Y/O LOS TRABAJOS

Requiere Presencialidad

No

Descripción

No hay prueba presencial, ni trabajo práctico que requiera presencialidad.

Criterios de evaluación

Ponderación de la prueba presencial y/o los trabajos en la nota final Fecha aproximada de entrega

Ámbito: GUI - La autenticidad, validez e integridad de este documento puede ser verificada mediantee "Código Seguro de Verificación (CSV)" en la dirección https://sede.uned.es/valida/

UNED 8 CURSO 2024/25

Comentarios y observaciones

PRUEBAS DE EVALUACIÓN CONTINUA (PEC)

¿Hay PEC?

Si,PEC no presencial

Descripción

Las pruebas de evaluación continua son tres actividades prácticas (ver apartado Plan de trabajo). Se encuentran disponibles en el curso virtual.

PEC Actividad 1: Esta actividad consiste en un conjunto de ejercicios de programación en lenguaje ensamblador a realizar con el microcontrolador PIC16F84A de 8 bits utilizando un simulador gratuito y disponible en el curso virtual.

PEC Actividad 2: Esta actividad consiste en diseñar un sistema de captura y compresión de vídeo de alta definición realizando una selección adecuada de un DSP en base a unas especificaciones operativas.

PEC Actividad 3: La finalidad de esta actividad es la realización de un sencillo sistema empotrado relacionado con las materias que se imparten en el Máster: robótica, visión, inteligencia artificial, control automático, etc. La propuesta del equipo docente es la realización de un sistema de control basado en la plataforma de bajo coste Arduino (o similar). En caso de que el alumno desee realizar un trabajo sobre Arduino diferente o utilizando otra plataforma hardware, puede presentarlo como propuesta al equipo docente para que autorice o deniegue su realización.

Criterios de evaluación

Las tres actividades son trabajos de carácter obligatorio e individual. La no realización de estas actividades conlleva el suspenso inmediato de la asignatura.

Los criterios de evaluación serán:

Originalidad del trabajo (si se detecta copia serán calificadas con un 0).

Contenido y desarrollo (si responde al trabajo solicitado).

Validación: Mediante la utilización de un simulador en la actividad 1 (se debe porporcionar el código fuente, su explicación y su verificación mediante simulación), mediante el análisis de viabilidad de las propuestas en la actividad 2, y mediante la realización de vídeos en la actividad 3 (se debe poder visualizar el funcionamiento de la práctica realizada junto con una explicación de su desarrollo).

Inderación de la PEC en la nota final 100%

Cha aproximada de entrega Al concluir las pruebas presenciales de junio o septiembre

Mentarios y observaciones

Ponderación de la PEC en la nota final

Fecha aproximada de entrega

Comentarios y observaciones

No existe un orden establecido para la entrega de las tres actividades por lo que se pueden entregar en cualquier orden, todas a la vez o de forma individual. Los detalles sobre la forma y dirección de envío se encuentran en las memorias disponibles en el curso virtual.

documento puede ser verificada mediantee La autenticidad, Ámbito: GUI -

Ø en (CSV)" Código (

UNED 9 CURSO 2024/25

OTRAS ACTIVIDADES EVALUABLES

No ¿Hay otra/s actividad/es evaluable/s? Descripción

Criterios de evaluación

Ponderación en la nota final Fecha aproximada de entrega Comentarios y observaciones

¿CÓMO SE OBTIENE LA NOTA FINAL?

Para poder optar a superar la asignatura será necesario entregar las tres actividades prácticas. La nota final se obtiene de la siguiente forma:

Nota final= 0.9 * (0.4 * Nota actividad 1 + 0.2 * Nota actividad 2 + 0.4 * Nota actividad 3) + 0.1 * Nota videoconferencia

Este criterio se aplica exactamente igual tanto en la convocatoria ordinaria como en la extraordinaria. Si el alumno ha realizado alguna entrega en la convocatoria ordinaria con valoración positiva, puede optar en la convocatoria extraordinaria por conservar la calificación otorgada sin necesidad de realizar una nueva entrega o bien realizar una entrega nueva para ser evaluado según las pautas establecidas en el sistema de evaluación.

Se realizará una videoconferencia del equipo docente con el estudiante. La finalidad de ello es asegurar la autoría del estudiante en los procesos de evaluación y en el aseguramiento de la adquisición de las competencias correspondientes.

Se utilizarán herramientas antiplagio (por ejemplo, Turnitin) para poder establecer, en la medida de lo posible, que las memorias de las actividades presentadas por los estudiantes han sido realizadas de forma individual.

BIBLIOGRAFÍA BÁSICA

Este curso no sigue ningún libro en particular, aunque gran parte de las ideas y prácticas que posible.

se exponen se pueden encontrar más desarrolladas en:

- •"Computers as Components, 3rd edition", Marilyn Wolf; Morgan Kaufmann, 2012 (ISBN-13: 978-0-1238-8436-7).
- •"Making Embedded Systems", E. White; O'Reilly Media, Inc., 2011 (ISBN-13: 978-1-4493-0214-6).
- "Software Engineering for Embedded Systems", Robert Oshana, Newnes, 2019 (ISBN-10: 0-12-809433-8). DOI: 10.1016/C2015-0-06188-3.

Textos más centrados en aspectos prácticos de la construcción de un sistema embebido utilizando un microprocesador o microcontrolador determinado son :

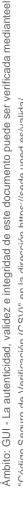
•"Designing Embedded Systems with PIC Microcontrollers, 2º edition", Tim Wilmshurst, Newnes, 2010 (ISBN-13: 978-6-61-266610-0). DOI: 10.1016/C2009-0-06386-7.

Ambito: GUI - La autenticidad, validez e integridad de este dirección en la (CSV)"

"Código ?

- •"Interfacing PIC Microcontrollers, 2º edition", Martin P. Bates, Newnes, 2014 (ISBN-13: 978-0-08-099363-8, Web ISBN-13: 978-0-08-099372-0). DOI: doi.org/10.1016/C2012-0-02690-7.
- "PIC Microcontrollers, 3st edition", Martin P. Bates, Newnes, 2012. (ISBN-13: 978-0-08-096911-4). DOI: 10.1016/C2010-0-65255-2.

Y una selección de textos sobre Arduino que pueden ser interesantes para la realización del trabajo práctico son:


- •Learn Electronics with Arduino", Eric Hagan, Jody Culkin, Maker Media, Inc, 2017 (ISBN-13: 978-1-6804-5374-4).
- •"Learn Electronics with Arduino", Don Wilcher, Apress, 2012 (ISBN-10: 1-4302-4266-3, ISBN-13: 978-1-4302-4266-6).
- •"Pro Arduino", Rick Anderson; Dan Cervo, Apress, 2013 (ISBN-10: 1-4302-3939-5, ISBN-13: 978-1-4302-3939-0).
- •"Beginning Arduino, 2º edition", Michael McRoberts, Apress, 2013 (ISBN-10: 1-4302-5016-X, Print ISBN-13: 978-1-4302-5016-6).
- •"Arduino Workshop, 2º edition", John Boxall, No Starch Press, 2021 (ISBN-10: 1-0981-2897-4).
- •"Exploring Arduino: Tools and Techniques for Engineering Wizardry, 2º edition", Jeremy Blum, John Wiley &Sons, 2020 (ISBN-13: 978-1-1194-0537-5).
- "Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino: Sensing the World with Python and MicroPython", Charles Bell, Apress, 2020 (ISBN: 978-1-4842-5795-1). DOI: 10.1007/978-1-4842-5796-8.
- •"Raspberry Pi 3 Home Automation Projects", Shantanu Bhadoria, Ruben Oliva Ramos, Packt Publishing, 2017 (ISBN: 978-1-783-283873).

Todos estos textos y muchos más relacionados con los contenidos de esta asignatura se pueden localizar en las colecciones de libros electrónicos O'Reilly for Higher Education, Springer y Elsevier accesibles a través de la biblioteca de la UNED.

BIBLIOGRAFÍA COMPLEMENTARIA

Durante el curso se suministrarán referencias técnicas para profundizar en los aspectos que se tratan. Algunas referencias útiles son:

- Microchip, https://www.microchip.com
- •Texas Instruments, https://www.ti.com
- PROTEUS, https://www.labcenter.com
- Arduino, https://www.arduino.cc
- •Arduino y Matlab, https://es.mathworks.com/hardware-support/arduino-matlab.html
- •Arduino y Simulink, https://es.mathworks.com/hardware-support/arduino-simulink.html
- •Raspberry Pi y Matlab, httpss://es.mathworks.com/hardware-support/raspberry-pimatlab.html

- •Raspberry Pi y Simulink, httpss://es.mathworks.com/hardware-support/raspberry-pisimulink.html
- •Android y Matlab, httpss://es.mathworks.com/hardware-support/android-sensor.html
- •Android y Simulink, httpss://es.mathworks.com/hardware-support/android-programmingsimulink.html.

RECURSOS DE APOYO Y WEBGRAFÍA

Se dispone de un curso virtual donde se proporciona información, orientación y ejemplos, así como material para poder realizar los trabajos y prácticas de la asignatura. Además, la UNED dispone de acceso a varias colecciones de libros electrónicos sobre diseño, desarrollo, programación y validación de Sistemas Empotrados que se encuentra a disposición de todos los alumnos matriculados en el Máster a través de la web de la biblioteca.

IGUALDAD DE GÉNERO

En coherencia con el valor asumido de la igualdad de género, todas las denominaciones que en esta Guía hacen referencia a órganos de gobierno unipersonales, de representación, o miembros de la comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por términos genéricos, se entenderán hechas indistintamente en género femenino o masculino, según el sexo del títular que los desempeñe. comunidad universitaria y se efectúan en género masculino, cuando no se hayan sustituido por

'Código