ASIGNATURA DE MÁSTER:

MODELOS Y MÉTODOS DE INVESTIGACIÓN **OPERATIVA**

Curso 2016/2017

(Código: 21152311)

1.PRESENTACIÓN

La asignatura "Modelos y métodos de Investigación Operativa" se sitúa dentro del Master de Matemáticas Avanzadas y pertenece a la especialidad de "Estadística e Investigación Operativa". Está adscrita al Departamento de Estadística, Investigación Operativa y Cálculo Numérico de la UNED. Se imparte en el tercer semestre y tiene asignados 7,5 créditos ECTS.

En esta Guía del Curso se expone toda la información básica y relevante sobre esta asignatura (conocimientos previos, objetivos, temario, metodología, etc.).

2.CONTEXTUALIZACIÓN

Esta asignatura se estudian algunos modelos de optimización, como los modelos de programación no lineal, los juegos de negociación y los juegos cooperativos, analizando su planteamiento, métodos de resolución y aplicaciones.

En cuanto a las competencias generales del Master que se adquieren con el estudio de la asignatura cabe mencionar:

- 1. Conocimientos generales en Investigación Operativa, una de las áreas más importantes de las Matemáticas.
- 2. Conocimiento y manejo de técnicas de optimización
- 3. Ser capaz de aplicar estas técnicas a problemas reales.
- 4. Capacidad de construir modelos matemáticos adecuados para poder analizar situaciones de conflicto.
- 5. Capacidad de obtener soluciones óptimas en estas situaciones.

3.REQUISITOS PREVIOS RECOMENDABLES

Para el estudio y desarrollo de esta asignatura es necesario tener conocimientos de Álgebra Lineal, Análisis Matemático, Geometría Analítica, Cálculo de Probabilidades y Estadística.

4.RESULTADOS DE APRENDIZAJE

Conocimientos

- 1. Saber las técnicas clásicas de optimización.
- 2 Conocer los modelos de programación no lineal.
- Saber que son los juegos de negociación.
- Conocer en qué consisten los juegos cooperativos.

Destrezas

- 1. Ser capaz de distinguir los diferentes tipos de modelos dependiendo de la naturaleza de la situación planteada.
- Saber construir los principales modelos matemáticos para describir situaciones de conflicto de intereses y analizarlas adecuadamente.
- 3. Conocer qué conceptos de solución pueden ser apropiados.
- 4. Desarrollar la capacidad para interpretar las soluciones de los problemas asociados al modelo.

Competencias

- 1. Ampliar la capacidad para modelar matemáticamente una situación del mundo real.
- 2. Analizar situaciones de conflicto y estudiar los diferentes tipos de modelos.
- 3. Adquirir nuevas herramientas para utilizar en algunos campos de investigación actual.
- 4. Desarrollar la capacidad para aplicar estas técnicas a problemas reales.

5.CONTENIDOS DE LA ASIGNATURA

La asignatura "Modelos y métodos de Investigación Operativa" incluye dos bloques temáticos:

Programación no lineal

Condiciones de óptimo.

Métodos de optimización sin restricciones.

Métodos de optimización con restricciones.

2. Juegos de Negociación y Juegos Cooperativos.

Negociación con dos jugadores y entre n- personas.

Juegos cooperativos.

Soluciones y aplicaciones de juegos cooperativos.

6.EQUIPO DOCENTE

- M ANGELES MURUAGA LOPEZ GUEREÑU
- **EDUARDO RAMOS MENDEZ**

7.METODOLOGÍA

La asignatura se impartirá con la metodología de la enseñanza a distancia propia de la UNED.

El sistema de aprendizaje consiste por una parte, en estudiar los temas expuestos en los bloques anteriores y por otra, la comunicación entre el alumno y el equipo docente a través de los medios disponibles actualmente: teléfono, correo ordinario, fax, correo electrónico, cursos virtuales, etc.

Dichos temas se encuentran en los libros de texto que se citan más abajo, en la bibliografía básica.

8.BIBLIOGRAFÍA BÁSICA

ISBN(13): 9788481583878

Título: JUEGOS COOPERATIVOS CON UTILIDAD TRANSFERIBLE USANDO MATLAB: TUGLAB

Comentarios y anexos:

Los libros de texto de la asignatura son :

- 1. Ramos, E. (2009): Programación no lineal. Uned.
- 2. Gardner, R. (1995): Juegos para Empresarios y Economistas. Antoni Bosch.
- 3. Myerson, R. (1991): Game Theory. Harvard University Press.

9.BIBLIOGRAFÍA COMPLEMENTARIA

Comentarios y anexos:

Otros libros básicos de teoría son:

- 1. Bazaraa, M. S.; Sherali, H. D.; y Shetty, C.M. (1993). Nonlinear programming theory and Algorithms. Wiley.
- 2. Jones, A.J., (2000). Game theory: Mathematical models of conflict. Horwood Publishing Limited.
- 3. Luenberger, D.G. y Ye, Y. (2008). Linear and Nonlinear Programmming. Springer.
- 4. Thomas, L.C., (1984). Games, theory and applications. Ellis Horwood Limited.

Dos libros clásicos de Teoría de Juegos son:

- 1. Mckinsey, J.C.C., (1967). Introducción a la teoría matemática de los juegos. Aguilar.
- 2. Owen, G., (1982). Game theory. Academic Press.

Libros de nivel más avanzado son:

- 1. Driessen, T., (1988). Cooperative Games, solutions and applications. Kluwer Academic Publishers.
- 2. Vorobev, N.N., (1977). Game Theory, Lectures for Economists and Systems Scientists. Springer Verlag.

10.RECURSOS DE APOYO AL ESTUDIO

El alumno, contará, además con el curso virtual de la asignatura, en el que tendrá acceso a diverso material teórico y práctico.

11.TUTORIZACIÓN Y SEGUIMIENTO

Los alumnos podrán contactar con los miembros del equipo docente en los días de guardia utilizando el medio que les resulte más conveniente.

· Muruaga López de Guereñu, Mª Ángeles, Despacho 105 de la Facultad de Ciencias. Teléfono (+34) 91 398 72 53. Miércoles lectivos de 16:30 a 20:30.

Correo electrónico: mmuruaga@ccia.uned.es

· Ramos Méndez, Eduardo, Despacho 114 de la Facultad de Ciencias. Teléfono (+34) 91 398 72 56. Miércoles lectivos de 16:30 a 20:30.

Correo electrónico: eramos@ccia.uned.es

Fax: (+34) 91 398 72 61

12.EVALUACIÓN DE LOS APRENDIZAJES

La evaluación tendrá carácter continuo y se realizará mediante la modalidad de pruebas de evaluación a distancia.

Dichas pruebas de evaluación consistirán en la realización de una serie de actividades de carácter teórico práctico, que incluirán ejercicios y problemas de aplicación. La valoración de cada uno de ellos se indicará en el correspondiente formulario que se enviará oportunamente a los alumnos.

La evaluación de cada bloque temático, Programación no lineal y Teoría de Juegos, será independiente. Para superar la asignatura será necesario obtener una calificación suficiente en cada bloque. La calificación final será la media de las dos partes.

13.COLABORADORES DOCENTES

Véase equipo docente.

